Parallelize Union Find Set

Zi Yin and Zhiang Hu (Harvy)

Dept. Electrical Engineering, Stanford University Institute for Computational and Mathematical Engineering, Stanford University

Jun 1, 2015

• Union find set: A data structure to keep disjoint subsets.

- Union find set: A data structure to keep disjoint subsets.
- Two operations: Union and Find

• Two operations: Find

- Two operations: Find
- Two operations: Union

Acknoledgement:picture from the Internet

```
• Optimization: Path compression
```

Acknoledgement: Algorithm from Wikipedia

```
• Optimization: Path compression
```

• Complexity for finding connected components in graph: Almost O(m).

Acknoledgement: Algorithm from Wikipedia

How to Parallelize it

• Settings:

- k machines, m edges, n nodes
- In fit in memory but m does not
- Ind connected components using union find set

How to Parallelize it

• Settings:

- k machines, m edges, n nodes
- In fit in memory but m does not
- Ind connected components using union find set

• Find root can be done in parallel

How to Parallelize it

• Settings:

- k machines, m edges, n nodes
- In fit in memory but m does not
- Ind connected components using union find set
- Find root can be done in parallel
- How about union?

One Iteration:

Step 1: each merge request (u,v) $r_u = root(u)$, $r_v = root(v)$, If $r_u \neq r_v$, emit root merge request (r_u, r_v)

Step 2: construct root merging graph (directed)

Step 3: for each root r:

if it has at least one out going edge, pick up arbitrary one (r, r_0), set p(r) as r_0

emit all other unmerged edge $(r,r_1) \dots (r,r_k)$ as new input for Step1.

Find Roots Can be done with embarasing parallel

Construct Root Merging graph:

• Reduce duplucated root merging requests into one. Got an undirected graph G_u

Construct Root Merging graph:

- Reduce duplucated root merging requests into one. Got an undirected graph G_u
- count the degree of each root

Construct Root Merging graph:

- Reduce duplucated root merging requests into one. Got an undirected graph G_u
- count the degree of each root
- for each edge $E=(r_i, r_j)$ suppose $deg(r_i) < deg(r_j)$ in G_u , set it to directed edge $< r_i, r_j >$, i.e. r_i has an out going edge to r_j .

Merging the Roots

• Each root can change its parent pointer to at most on other root simultaneously.

Merging the Roots

- Each root can change its parent pointer to at most on other root simultaneously.
- At least half of the roots are merged to some other root.

Scaling

Both number of nodes and number of request can be scaled. **Complexity** number of iterations: $O(\log m)$

Time complexity: $O(\log m)$ Shuffle size: O(m)