
Data Parallel EM for estimating the Genome Relative
Abundance (GRA) in Metagenomic Samples

Orren Karniol-Tambour

Setting: We’ve taken a sample from a microbial community - e.g. water from a pond, blood sample from a sick human.
The sample contains traces of the DNA and RNA of viruses and bacteria living in the pond/body.

We perform shotgun sequencing on the sample and get a series of genomic reads - i.e. strings of nucleotide bases:

So we have:
- a set of known reference genomes (long strings).

- a set of reads (shorter strings), along with the number of high quality ‘hits’ from each read to each genome

(where a ‘hit’ reflects edit distance between the read string and substring of a reference genome below some threshold)

Our goal is to estimate the relative abundance of all known bacteria and viruses
in the environment we sampled from - e.g. figure out why our patient is sick

We assume our reads are drawn iid from a mixture of genomes - so we can view the Genome Relative Abundance
(GRA) as a finite mixture we need to estimate and use EM to solve:

EM - quick review

-iterative algorithm for finding maximum likelihood
estimate of parameters when model depends on latent
variables

-‘missing’ Z data matrix, where Zij tells us whether
sample i came from source j

-pick a guess for parameters, estimate posterior
distribution of the Zs given data X and current guess for
parameters

-update parameters based on current guess for Zs

-improves on each iteration, converges to local optimum

Xia et al., PLoS One 2011

EM applied to GRA estimation:

Each iteration costs O(mn) time, where m is the number of reads, n is number of genomes

In practice, m is very large (millions) and getting larger as sequencing gets exponentially cheaper
and ‘deep’ sequencing becomes common

n is manageable (thousands) and will grow far more slowly

Key insight: we can approximate the likelihood of the data as # hits from read i on
genome j, normalized by length of genome j (since hits on shorter genomes are
more informative)

S

Compute Zi:

Compute Zi:

Compute Zi:

L

j

j

j

broadcast
(one to many)

collect
(many to one)

reads

genomes

map
(none)

reduceByKey
(many to many)

E-step M-step

RDD: (Ri, ((Gj,1), (Gj, 1),...))

m

Single Machine - Cost of Single Iteration

O(mn) time

Data Parallel EM - Cost of Single Iteration

Time
E-step: O(mn/B) Total: O(mn/B) time
M-step: O(n/B)

embarrassingly parallel!

Communication
broadcast: O(nB) Total: O(nB)
shuffle: O(nB)
(with combiners)

