
.
Distributed Monte Carlo Tree Search

Introduction

Monte Carlo Tree Search(MCTS) is a method for finding optimal decisions in a given domain by taking
random samples in the decision space and building a search tree according to the results.

.
Distributed Monte Carlo Tree Search

ÅBoard games:
ÅHex
ÅGo
ÅGame of the Amazons

ÅReal-time video games:
ÅTotal War: Rome II

ÅNondeterministic games:
Åpoker
Åskat

Applications

.
Distributed Monte Carlo Tree Search

Step 1: Selection

Begin with some root R, a tree policy is used
to find the most urgent child of R, then we
successively select child till we reach a leaf L.

R11/21

7/10 0/3 4/8

2/3 0/1 5/6 1/2 1/3 2/3

2/3 3/3 L

Each tree node stores the number of
won/played playouts

.
Distributed Monte Carlo Tree Search

Step 2: Expansion

Unless the node L ends game, create one or
more node of L and pick one of them, call it
C.

R11/21

7/10 0/3 4/8

2/3 0/1 5/6 1/2 1/3 2/3

2/3 3/3 L

0/0

ύ

ὲ
ὅ
ÌÏÇὸ

ὲ
Tree Policy

.
Distributed Monte Carlo Tree Search

Step 3: Simulation

Simulate random playouts from C.

R11/21

7/10 0/3 4/8

2/3 0/1 5/6 1/2 1/3 2/3

2/3 3/3 L

0/0

1/1

.
Distributed Monte Carlo Tree Search

Step 4: Backpropagation

Update the information of the nodes in the
path from C to R using the result of the
random playouts.

R12/22

8/11 0/3 4/8

2/3 0/1 6/7 1/2 1/3 2/3

2/3 4/4 L

1/1

1/1

.
Distributed Monte Carlo Tree Search

Version 1

ÅModify the Expansion Stage:
After we have selected a node to expand, we
expand the node into m random children
rather than a single child

ÅMultiple Simulation:
We simulate each child k times to get a better estimate of its
node value.

.
Distributed Monte Carlo Tree Search

Version 1

ÅAdvantages:
1. Able to simulate more moves per

iteration
2. More reliable estimates of interior

nodes

ÅDisadvantages:
1. After running tests, we found on larger

sized problems simulating more moves
from a given state does not improve
game playing strength.

2. Estimates of interior nodes are not
very accurate no matter how many
simulations we run if the graph is very
tall

.
Distributed Monte Carlo Tree Search

Version 2

ÅModify the Tree Policy:
We no longer choose a node to expand deterministically,
we now choose a node to expand randomly in
proportion to its UCT value. M is now the number of
such nodes chosen

ÅGive unvisited nodes a UCT value:
We give nodes that have yet to be visited a small UCT value so
that in each iteration, we can explore past a single layer of
children.

ÅNew Tree Policy -> Select More Nodes:
With this tree policy, we can run the selection algorithm
and pick out different nodes to expand every time. This
allows us to search not just the best move, but also other
good moves.

ÅModify k:
Choose k to increase and decrease with m

.
Distributed Monte Carlo Tree Search

Version 2

ÅAdvantages:
1. Explore moves apart form just the

best move.
2. Able to simulate deeper into the tree

per iteration

ÅDisadvantages:
What should the values of m, and k be?

.
Distributed Monte Carlo Tree Search

Implementation - Othello

We apply MCTS to Othello in order to compare game strength of regular MCTS and distributed MCTS.

ÅOthello:
Each node in the tree is the state of the
game, which is simply the board and the
current player. The edges of the tree are
the moves taken to go from state to state.

ÅMap Reduce:
The nodes of the graph chosen for
simulation are mapped to the cluster and
the results are collected as a list at the
driver. The driver then does the
backpropagation for each state locally.

.
Distributed Monte Carlo Tree Search

Results

Å4x4 Board: Distributed MCTS set to m = 100, k = 10 and iterations = 10 vs. regular MCTS
with iterations = 100 -> 24 games, 12 wins, 6 losses, 6 draws

Å6x6 Board: Distributed MCTS set to m = 100, k = 20 and iterations = 100 vs. regular MCTS
with iterations = 1000 -> 10 games, 3 wins, 7 losses

Å6x6Board: Distributed MCTS set to m = 200, k = 1 and iterations = 100 vs. regular MCTS
with iterations = 1000 -> 10 games, 3 wins, 7 losses

Å6x6 Board: Distributed MCTS set to m = 100, k = 1and iterations = 10 with custom UCT
values vs. regular MCTS with iterations = 100 -> 10 games, 5 wins, 5 losses

*Both agents were given roughly the same amount of time to compute a move

ÅTakeaway:
Distributed MCTS struggles for larger board sizes since the problem size scales exponentially to
board size, but m does not.

.
Distributed Monte Carlo Tree Search

Analysis & Conclusion

ÅNumber of Iterations:
Increasing the number of iterations in MCTS has a super-linear increase
in game playing strength. However, distributed MCTS can not increase its
iterations due its time dependence on the map reduce.

ÅTime Dependent on # of Map Reduces:
The majority of time in the algorithm is spent on the map reduce,
which prevents us from increasing the number of iterations as a map
reduce is quite time consuming.

ÅConclusion:
We find that to match the strength of the regular MCTS we need a
better tree policy that can work for the distributed MCTS.

.
Distributed Monte Carlo Tree Search

Questions?

