DISTRIBUTED MINIMUM SPANNING TREES CME 323 Project

Swaroop Indra Ramaswamy & Rohit Patki May 27, 2015

Stanford University

Problem Statement

Given an undirected, weighted simple graph we attempt to find a Minimum Spanning Tree (MST) or Minimum Spanning Forest (MSF).

Assumptions

- The number of edges in the graph (m) is much larger than the number of vertices of the graph (n)
- The edges of the graph do not fit in the memory of a single machine
- $\cdot\,$ The vertices of the graph do fit in the memory of a single machine

- · Single linkage clustering
- Network Design
- · Image Segmentation
- · Taxonomy
- · Broadcasting in computer networks
- · Important primitive in many graph algorithms

Classical Algorithms

- Kruskal's Algorithm $O(m \log n)$
- · Prim's Algorithm $O(m \log n)$

Faster Algorithms

- · Karger, Klein and Tarjan (1995) Randomized O(m)
- · Bernard Chazelle (2000) $O(m\alpha(m, n))$
- · Fredman and Willard (1994) O(m + n) for integer weights

if $|E| < \eta$ then Compute $T^* = MST(V, E)$ Return T* end if $k = \Theta\left(\frac{|E|}{n}\right)$ Partition É into $E_1, E_2, \dots E_k$ where $|E_i| < \eta$ using a universal hash function Compute $T_i^* = MST(G(V, E_i))$ in parallel Return $MST(G(V, \cup_i T_i^*))$ Algorithm 1: Edge partitioning

Figure: Edge Partition

EDGE PARTITIONING : ANALYSIS

- · Memory of each machine, $\eta = O(n^{1+\epsilon})$
- Number of edges, $m = O(n^{1+c})$
- · Number of machines, $k = O(n^{c-\epsilon})$

Processing time

It can be shown that the algorithm takes $\begin{bmatrix} c \\ c \end{bmatrix}$ iterations in expectation.

Processing time per iteration

Kruskal's on each machine random partioning of edges

Communication Cost

- \cdot One all-to-all communication (shuffle) in each iteration
- · Cost per iteration = m, $\frac{m}{n^{\epsilon}}$, $\frac{m}{n^{2\epsilon}}$

Total communication cost

$$\frac{n(n^{c}-1)}{1-n^{-\epsilon}}$$

Partition V into $V_1, V_2, ..., V_k$ with $V_i \cap V_j = \Phi$ using a universal hash function Denote the edges induced by V_i and V_j by $E_{i,j}$ Denote the induced subgraph by $G(V_i \cup V_j, E_{i,j})$ Compute $T_{i,j}^* = MST(G(V_i \cup V_j, E_{i,j}))$ in parallel Return $MST(G(V, \cup_{i,j}T_{i,j}^*))$

Algorithm 2: Vertex partitioning

- · Number of edges, $m = n^{1+c}$
- Number of partitions, $k = n^{\frac{c}{2}}$
- · Number of edges in each mapper = $n^{1+\frac{c}{2}}$, in expectation

Processing Time

Total processing time

$$\underbrace{O\left(\frac{m}{k}\log\frac{n}{k}\right)}_{\text{(ruskal's on each machine}} + \underbrace{O\left(n^{1+\frac{c}{2}}\log n\right)}_{\text{Final Kruskal's}}$$

Communication Cost

- · One one-to-all communication (broadcast) = $O(nk^2)$
- One all-to-all (groupByKey) = O(m)
- · One all-to-one to compute the final MST = $O(n^{1+\frac{c}{2}})$

Total communication cost

$$O\left(nk^{2}\right)+O\left(m\right)+O\left(n^{1+\frac{c}{2}}\right)$$

Communication Time

Total communication time

$$O(n \log k) + O(m) + O(n^{1-\frac{c}{2}})$$

```
A = DISJOINTSET()
for i in V do
  A.MAKE-SET(i)
end for
Broadcast A
Find the minimum edge leaving each disjoint set using a reduce
operation, denote this by the list of edges, \hat{E}
while |\hat{E}| > 0 do
  for e in Ê do
    A.UNION(u, v)
  end for
  Broadcast A
  \hat{E} = Minimum edges leaving the disjoint sets
end while
              Algorithm 3: Parallel Prim's Algorithm
```

Figure: Connected components

Figure: Potential new edges

Figure: Final new edge after reduce

Figure: New connected component

After each iteration of the while loop, the number of edges left to find reduces by at least $\frac{1}{2}$. Therefore, at most log *n* iterations are required.

Processing Time

Total Processing Time,

Communication Cost

- One one-to-all broadcast of the disjoint set data-structure, per iteration = O(nk)
- · One reduce to find minimum edges, per iteration = $O\left(\frac{n}{2^{i}}\right)$

Total communication cost,

 $O(nk\log n) + O(n)$

Communication Time

Total communication time,

 $O(n \log k \log n) + O(n \log n)$

	Edge	Vertex	Parallel Prim's	
	Partitioning	Partitioning		
Proc. Time	$O\left(\frac{m}{\epsilon k}\log n\right)$	$O\left(\left(\frac{m}{n^{\frac{c}{2}}}+n^{1+\frac{c}{2}}\right)\log n\right)$	$O\left(\frac{m}{k}\log n + m\right)$	
Comm. Time	$O\left(m\frac{1-n^{-c}}{1-n^{-\epsilon}}\right)$	$O(m + cn \log n)$	O(nlogklogn)	

- Number of edges $m = n^{1+c}$
- · Memory per machine = $n^{1+\epsilon}$

Figure: Communication Time vs vs c for n = 1,000,000

Figure: Processing Time vs c for n = 1,000,000

	No.of	No.of	Edge	Vertex	Parallel Prim's
	Vertices	Edges	Partitioning	Partitioning	
1	281903	2312497	791 s	316 s	92 s
2	875713	5105039	7384 s	3733 s	229 s
3	685230	7600595	3670 s	1569 s	313 s
4	1696415	11095298	> 7200 s	> 3600 s	335 s
5	1088092	1541898	> 7200 s	> 3600 s	394 s

- 1. Stanford web graph
- 2. Google web graph
- 3. BerkStan graph
- 4. as-skitter
- 5. Road-net PA

- 3 algorithms for distributed MST : Vertex Partitioning, Egde Partitioning and Parallel Prim's
- Communication time for Parallel Prim's is independent of the number of edges
- For sparse graphs, if large number of machines are available, use **Vertex Partitioning**
- In general, **Parallel Prim's** has a better processing time than the other two algorithms
- \cdot As the density of the graph increases, **Parallel Prim's** wins out