DISTRIBUTED MINIMUM SPANNING TREES
CME 323 Project

Swaroop Indra Ramaswamy & Rohit Patki
May 27, 2015

Stanford University

PROBLEM STATEMENT & ASSUMPTIONS

Problem Statement

Given an undirected, weighted simple graph we attempt to find a
Minimum Spanning Tree (MST) or Minimum Spanning Forest (MSF).

Assumptions

- The number of edges in the graph (m) is much larger than the
number of vertices of the graph (n)

- The edges of the graph do not fit in the memory of a single
machine

- The vertices of the graph do fit in the memory of a single machine

APPLICATIONS

- Single linkage clustering

- Network Design

- Image Segmentation

- Taxonomy

- Broadcasting in computer networks

- Important primitive in many graph algorithms

SINGLE MACHINE ALGORITHMS

Classical Algorithms

- Kruskal's Algorithm - O (m logn)
- Prim’s Algorithm - O (m logn)

Faster Algorithms

- Karger, Klein and Tarjan (1995) - Randomized O (m)
- Bernard Chazelle (2000) - O (ma (m, n))
- Fredman and Willard (1994) - O (m + n) for integer weights

EDGE PARTITIONING

if |E| < n then

Compute T* = MST(V, E)

Return T*
end if
r=o(%)
Partition E into £, E, ... Ep where |Ej] < n using a universal hash
function
Compute TF = MST(G(V, E;)) in parallel
Return MST (G (V,UiTY))

Algorithm 1: Edge partitioning

EGDE PARTITIONING

Figure: Edge Partition

EDGE PARTITIONING : ANALYSIS

- Memory of each machine, n = 0 (n*°)
- Number of edges, m = O (n™*)

- Number of machines, k = 0 (n“~°)

Processing time

It can be shown that the algorithm takes [£] iterations in
expectation.

Processing time per iteration

o(foen) + o(3)

———— N———
Kruskal’s on each machine random partioning of edges

EDGE PARTITIONING : ANALYSIS

Communication Cost

- One all-to-all communication (shuffle) in each iteration

. . o m om
Cost per iteration = m, -2, 7

Total communication cost

n(n‘—1
1—n—¢

VERTEX PARTITIONING

Partition Vinto V4, V5, ... Vi with V; NV, = ® using a universal hash
function
Denote the edges induced by V; and V; by E;;
Denote the induced subgraph by G (V; UV}, £)
Compute Tf; = MST (G (V; U V;, £)) in parallel
Return MST (G (V,U,Ty;))
Algorithm 2: Vertex partitioning

VERTEX PARTITIONING : ANALYSIS

- Number of edges, m = n'*¢
- Number of partitions, k = n3

- Number of edges in each mapper = n'*%, in expectation

Processing Time

Total processing time

0 (% log %) +0 (n”% logn)

~———
Kruskal’s on each machine Final Kruskal’s

VERTEX PARTITIONING : ANALYSIS

Communication Cost

- One one-to-all communication (broadcast) = O (nk?)
- One all-to-all (groupByKey) = O (m)
- One all-to-one to compute the final MST = O (n'*?)

Total communication cost
0 (nk?) +0(m) + 0 (n'*?)

Communication Time

Total communication time

O(nlogk) +0(m)+ 0 (n'=%)

PARALLEL PRIM’'S ALGORITHM

A = DISJOINTSET()
foriinVdo

A.MAKE-SET(i)
end for
Broadcast A
Find the minimum edge leaving each disjoint set using a reduce
operation, denote this by the list of edges, £
while |E| > 0 do

forein £ do

A.UNION(u, v)

end for

Broadcast A

E = Minimum edges leaving the disjoint sets

end while
Algorithm 3: Parallel Prim’s Algorithm 1

PARALLEL PRIM'S

Figure: Connected components

PARALLEL PRIM'S

Figure: Potential new edges

J

PARALLEL PRIM'S

Figure: Final new edge after reduce

14

PARALLEL PRIM'S

Figure: New connected component

PARALLEL PRIM’S ALGORITHM : ANALYSIS

After each iteration of the while loop, the number of edges left to

find reduces by at least % Therefore, at most logn iterations are
required.

Processing Time

Total Processing Time,

e x 0(g) + om

iterations N Total cost of all the reduces
per iteration

16

PARALLEL PRIM’S ALGORITHM : ANALYSIS

Communication Cost

- One one-to-all broadcast of the disjoint set data-structure, per
iteration = O (nR)
- One reduce to find minimum edges, per iteration = O (Zﬂ)

Total communication cost,

O (nklogn) + O(n)

Communication Time

Total communication time,

O (nlogklogn) + O (nlogn)

THEORETICAL COMPARISON

Edge Vertex
Partitioning Partitioning

Proc. Time O(Zlogn) O ((nﬂ2 + n”§) logn) O (% logn+m)
Comm. Time O (m]jg:i) O (m+ cnlogn) O (nlogklogn)

Parallel Prim’s

- Number of edges m = n'+¢

- Memory per machine = n'+e

PLOTS: COMMUNICATION TIME

Figure: Communication Time vs vs ¢ for n = 1,000, 000

le8

1.2

1.0F

0.8

0.6

0.4

0.2

0.00 0.05 0.10 0.15 0.20 0.25 0.30

19

PLOTS: PROCESSING TIME

Figure: Processing Time vs ¢ for n = 1,000, 000

1le9

20

EXPERIMENTAL COMPARISON

No.of No.of Edge Vertex .
. o o Parallel Prim’s

Vertices Edges Partitioning Partitioning

281903 2312497 791s 316's 92s

875713 5105039 7384 s 3733's 229s

685230 7600595 3670 s 1569 s 313s

1696415 11095298 >7200s > 3600 s 335s
1088092 1541898 >7200s > 3600 s 394 s

G| B WIN| -

Stanford web graph
Google web graph
BerkStan graph
as-skitter
Road-net PA

G > W N =

21

SUMMARY

- 3 algorithms for distributed MST : Vertex Partitioning, Egde
Partitioning and Parallel Prim’s

- Communication time for Parallel Prim’s is independent of the
number of edges

- For sparse graphs, if large number of machines are available, use
Vertex Partitioning

- In general, Parallel Prim’s has a better processing time than the
other two algorithms

- As the density of the graph increases, Parallel Prim’s wins out

22

