DISTRIBUTED MINIMUM SPANNING TREES

CME 323 Project

Swaroop Indra Ramaswamy \& Rohit Patki
May 27, 2015
Stanford University

Problem Statement \& Assumptions

Problem Statement

Given an undirected, weighted simple graph we attempt to find a Minimum Spanning Tree (MST) or Minimum Spanning Forest (MSF).

Assumptions

- The number of edges in the graph (m) is much larger than the number of vertices of the graph (n)
- The edges of the graph do not fit in the memory of a single machine
- The vertices of the graph do fit in the memory of a single machine

APPLICATIONS

- Single linkage clustering
- Network Design
- Image Segmentation
- Taxonomy
- Broadcasting in computer networks
- Important primitive in many graph algorithms

SIngLE MACHINE ALGORITHMS

Classical Algorithms

- Kruskal's Algorithm - O (m logn)
- Prim's Algorithm - O (m log n)

Faster Algorithms

- Karger, Klein and Tarjan (1995) - Randomized O (m)
- Bernard Chazelle (2000) - O (ma (m,n))
- Fredman and Willard (1994)-O $(m+n)$ for integer weights

Edge partitioning

if $|E|<\eta$ then
Compute T* $=\operatorname{MST}(V, E)$
Return T^{*}
end if
$k=\Theta\left(\frac{|E|}{\eta}\right)$
Partition E into $E_{1}, E_{2}, \ldots E_{k}$ where $\left|E_{i}\right|<\eta$ using a universal hash function
Compute $T_{i}^{*}=\operatorname{MST}\left(G\left(V, E_{i}\right)\right)$ in parallel
Return $\operatorname{MST}\left(G\left(V, U_{i} T_{i}^{*}\right)\right)$
Algorithm 1: Edge partitioning

EgDE PARTITIONING

Figure: Edge Partition

Edge partitioning : ANALYSIS

- Memory of each machine, $\eta=O\left(n^{1+\epsilon}\right)$
- Number of edges, $m=O\left(n^{1+c}\right)$
- Number of machines, $k=O\left(n^{c-\epsilon}\right)$

Processing time

It can be shown that the algorithm takes $\left\lceil\frac{c}{\epsilon}\right\rceil$ iterations in expectation.

Processing time per iteration

EdgE PARTITIONING : ANALYSIS

Communication Cost

- One all-to-all communication (shuffle) in each iteration
- Cost per iteration $=m, \frac{m}{n^{\epsilon}}, \frac{m}{n^{2 \epsilon}}$

Total communication cost

$$
\frac{n\left(n^{c}-1\right)}{1-n^{-\epsilon}}
$$

VERTEX PARTITIONING

Partition V into $V_{1}, V_{2}, \ldots . V_{k}$ with $V_{i} \cap V_{j}=\Phi$ using a universal hash function
Denote the edges induced by V_{i} and V_{j} by $E_{i, j}$
Denote the induced subgraph by $G\left(V_{i} \cup V_{j}, E_{i, j}\right)$
Compute $T_{i, j}^{*}=\operatorname{MST}\left(G\left(V_{i} \cup V_{j}, E_{i, j}\right)\right)$ in parallel
Return MST $\left(G\left(V, \cup_{i, j} T_{i, j}^{*}\right)\right)$
Algorithm 2: Vertex partitioning

VERTEX PARTITIONING : ANALYSIS

- Number of edges, $m=n^{1+c}$
- Number of partitions, $k=n^{\frac{c}{2}}$
- Number of edges in each mapper $=n^{1+\frac{c}{2}}$, in expectation

Processing Time

Total processing time

VERTEX PARTITIONING : ANALYSIS

Communication Cost

- One one-to-all communication (broadcast) $=O\left(n k^{2}\right)$
- One all-to-all (groupByKey) $=0(m)$
- One all-to-one to compute the final MST $=O\left(n^{1+\frac{c}{2}}\right)$

Total communication cost

$$
O\left(n k^{2}\right)+O(m)+O\left(n^{1+\frac{c}{2}}\right)
$$

Communication Time
Total communication time

$$
O(n \log k)+O(m)+O\left(n^{1-\frac{c}{2}}\right)
$$

Parallel Prim’s Algorithm

> A = DISJOINTSET()
for i in V do
A.MAKE-SET(i)
end for
Broadcast A
Find the minimum edge leaving each disjoint set using a reduce operation, denote this by the list of edges, \hat{E}
while $|\hat{E}|>0$ do
for e in \hat{E} do
A.UNION(u, v)
end for
Broadcast A
$\hat{E}=$ Minimum edges leaving the disjoint sets
end while

Parallel Prim's

Figure: Connected components

PARALLEL PRIM'S

Figure: Potential new edges

Parallel Prim's

Figure: Final new edge after reduce

PARALLEL PRIM'S

Figure: New connected component

Parallel Prim’s Algorithm : ANALYSis

After each iteration of the while loop, the number of edges left to find reduces by at least $\frac{1}{2}$. Therefore, at most $\log n$ iterations are required.

Processing Time

Total Processing Time,

$$
\underbrace{\log n}_{\text {iterations }} \times \underbrace{O\left(\frac{m}{k}\right)}_{\text {per iteration }}+\underbrace{O(m)}_{\text {Total cost of all the reduces }}
$$

Parallel Prim’s Algorithm : Analysis

Communication Cost

- One one-to-all broadcast of the disjoint set data-structure, per iteration = O (nk)
- One reduce to find minimum edges, per iteration $=O\left(\frac{n}{2^{1}}\right)$

Total communication cost,

$$
O(n k \log n)+O(n)
$$

Communication Time
Total communication time,

$$
O(n \log k \log n)+O(n \log n)
$$

Theoretical Comparison

	Edge Partitioning	Vertex Partitioning	Parallel Prim's
Proc. Time	$O\left(\frac{m}{\epsilon \epsilon} \log n\right)$	$O\left(\left(\frac{m}{n^{\frac{c}{2}}}+n^{1+\frac{c}{2}}\right) \log n\right)$	$O\left(\frac{m}{k} \log n+m\right)$
Comm. Time	$O\left(m \frac{1-n^{-c}}{1-n-\epsilon}\right)$	$O(m+c n \log n)$	$O(n \log k \log n)$

- Number of edges $m=n^{1+c}$
- Memory per machine $=n^{1+\epsilon}$

Plots: COMMUNICATION TIME

Figure: Communication Time vs vs c for $n=1,000,000$

Plots: Processing Time

Figure: Processing Time vs c for $n=1,000,000$

EXPERIMENTAL COMPARISON

	No.of Vertices	No.of Edges	Edge Partitioning	Vertex Partitioning	Parallel Prim's
1	281903	2312497	791 s	316 s	92 s
2	875713	5105039	7384 s	3733 s	229 s
3	685230	7600595	3670 s	1569 s	313 s
4	1696415	11095298	$>7200 \mathrm{~s}$	$>3600 \mathrm{~s}$	335 s
5	1088092	1541898	$>7200 \mathrm{~s}$	$>3600 \mathrm{~s}$	394 s

1. Stanford web graph
2. Google web graph
3. BerkStan graph
4. as-skitter
5. Road-net PA

SUMMARY

- 3 algorithms for distributed MST : Vertex Partitioning, Egde Partitioning and Parallel Prim's
- Communication time for Parallel Prim's is independent of the number of edges
- For sparse graphs, if large number of machines are available, use Vertex Partitioning
- In general, Parallel Prim's has a better processing time than the other two algorithms
- As the density of the graph increases, Parallel Prim's wins out

