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Problem Statement & Assumptions

Problem Statement

Given an undirected, weighted simple graph we attempt to find a
Minimum Spanning Tree (MST) or Minimum Spanning Forest (MSF).

Assumptions

∙ The number of edges in the graph (m) is much larger than the
number of vertices of the graph (n)

∙ The edges of the graph do not fit in the memory of a single
machine

∙ The vertices of the graph do fit in the memory of a single machine
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Applications

∙ Single linkage clustering
∙ Network Design
∙ Image Segmentation
∙ Taxonomy
∙ Broadcasting in computer networks
∙ Important primitive in many graph algorithms
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Single machine algorithms

Classical Algorithms

∙ Kruskal’s Algorithm - O (m logn)
∙ Prim’s Algorithm - O (m logn)

Faster Algorithms

∙ Karger, Klein and Tarjan (1995) - Randomized O (m)

∙ Bernard Chazelle (2000) - O (mα (m,n))
∙ Fredman and Willard (1994) - O (m+ n) for integer weights
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Edge partitioning

if |E| < η then
Compute T∗ = MST(V, E)
Return T∗

end if
k = Θ

(
|E|
η

)
Partition E into E1, E2, ... Ek where |Ei| < η using a universal hash
function
Compute T∗i = MST (G (V, Ei)) in parallel
Return MST

(
G
(
V,∪iT∗i

))
Algorithm 1: Edge partitioning
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Egde partitioning

Figure: Edge Partition
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Edge partitioning : Analysis

∙ Memory of each machine, η = O
(
n1+ϵ

)
∙ Number of edges, m = O

(
n1+c

)
∙ Number of machines, k = O (nc−ϵ)

Processing time

It can be shown that the algorithm takes ⌈ cϵ⌉ iterations in
expectation.

Processing time per iteration

O
(m
k logn

)
︸ ︷︷ ︸

Kruskal′s on each machine

+ O
(m
k

)
︸ ︷︷ ︸

random partioning of edges
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Edge partitioning : Analysis

Communication Cost

∙ One all-to-all communication (shuffle) in each iteration
∙ Cost per iteration = m, mnϵ ,

m
n2ϵ

Total communication cost

n(nc−1)
1−n−ϵ
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Vertex partitioning

Partition V into V1, V2, ... Vk with Vi ∩ Vj = Φ using a universal hash
function
Denote the edges induced by Vi and Vj by Ei,j
Denote the induced subgraph by G

(
Vi ∪ Vj, Ei,j

)
Compute T∗i,j = MST

(
G
(
Vi ∪ Vj, Ei,j

))
in parallel

Return MST
(
G
(
V,∪i,jT∗i,j

))
Algorithm 2: Vertex partitioning
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Vertex partitioning : Analysis

∙ Number of edges, m = n1+c

∙ Number of partitions, k = n c
2

∙ Number of edges in each mapper = n1+ c
2 , in expectation

Processing Time

Total processing time

O
(m
k log

n
k

)
︸ ︷︷ ︸

Kruskal′s on each machine

+O
(
n1+ c

2 logn
)

︸ ︷︷ ︸
Final Kruskal′s
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Vertex partitioning : Analysis

Communication Cost

∙ One one-to-all communication (broadcast) = O
(
nk2

)
∙ One all-to-all (groupByKey) = O (m)

∙ One all-to-one to compute the final MST = O
(
n1+ c

2
)

Total communication cost

O
(
nk2

)
+ O (m) + O

(
n1+ c

2
)

Communication Time

Total communication time

O (n log k) + O (m) + O
(
n1− c

2
)
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Parallel Prim’s Algorithm

A = DISJOINTSET()
for i in V do
A.MAKE-SET(i)

end for
Broadcast A
Find the minimum edge leaving each disjoint set using a reduce
operation, denote this by the list of edges, Ê
while |Ê| > 0 do
for e in Ê do
A.UNION(u, v)

end for
Broadcast A
Ê = Minimum edges leaving the disjoint sets

end while
Algorithm 3: Parallel Prim’s Algorithm 11



Parallel Prim’s

Figure: Connected components
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Parallel Prim’s

Figure: Potential new edges
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Parallel Prim’s

Figure: Final new edge after reduce
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Parallel Prim’s

Figure: New connected component
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Parallel Prim’s Algorithm : Analysis

After each iteration of the while loop, the number of edges left to
find reduces by at least 1

2 . Therefore, at most logn iterations are
required.

Processing Time

Total Processing Time,

logn︸ ︷︷ ︸
iterations

× O
(m
k

)
︸ ︷︷ ︸
per iteration

+ O(m)︸ ︷︷ ︸
Total cost of all the reduces
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Parallel Prim’s Algorithm : Analysis

Communication Cost

∙ One one-to-all broadcast of the disjoint set data-structure, per
iteration = O (nk)

∙ One reduce to find minimum edges, per iteration = O
( n
2i
)

Total communication cost,

O (nk logn) + O(n)

Communication Time

Total communication time,

O (n log k logn) + O (n logn)
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Theoretical Comparison

Edge
Partitioning

Vertex
Partitioning

Parallel Prim’s

Proc. Time O
(m
ϵk logn

)
O
((

m
n
c
2
+ n1+ c

2

)
logn

)
O
(m
k logn+m

)
Comm. Time O

(
m 1−n−c

1−n−ϵ

)
O (m+ cn logn) O (n log k logn)

∙ Number of edges m = n1+c

∙ Memory per machine = n1+ϵ
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Plots: Communication Time

Figure: Communication Time vs vs c for n = 1, 000, 000
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Plots: Processing Time

Figure: Processing Time vs c for n = 1, 000, 000
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Experimental Comparison

No.of
Vertices

No.of
Edges

Edge
Partitioning

Vertex
Partitioning Parallel Prim’s

1 281903 2312497 791 s 316 s 92 s
2 875713 5105039 7384 s 3733 s 229 s
3 685230 7600595 3670 s 1569 s 313 s
4 1696415 11095298 > 7200 s > 3600 s 335 s
5 1088092 1541898 > 7200 s > 3600 s 394 s

1. Stanford web graph
2. Google web graph
3. BerkStan graph
4. as-skitter
5. Road-net PA
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Summary

∙ 3 algorithms for distributed MST : Vertex Partitioning, Egde
Partitioning and Parallel Prim’s

∙ Communication time for Parallel Prim’s is independent of the
number of edges

∙ For sparse graphs, if large number of machines are available, use
Vertex Partitioning

∙ In general, Parallel Prim’s has a better processing time than the
other two algorithms

∙ As the density of the graph increases, Parallel Prim’s wins out
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