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Edmonds-Karp algorithm for max-flow

We increment the flow from s to t by finding a
flow-augmenting path

We do this by finding a path in the residual graph

The total flow is increased by the maximum capacity found on
our path

Maximal flow is found when there are no more
flow-augmenting paths

Note that we can lower the flow on a particular edge to favor
another path
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Assumptions and Methods

n vertices: can fit on a single machine

m edges: too large to fit

Integer edge capacities

Use Pregel and MapReduces to distribute
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Distributed max-flow

Initialization:

Set flows in all edges to 0

Set residual graph RG equal to initial graph

While there is a path from s to t in RG :

Find the shortest path P between s and t in RG

Find max flow fmax you can push along P

Broadcast P

Update flows

Update RG using P and fmax
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Edmonds-Karp algorithm for max-flow
Analysis

Single Machine Algorithm
Distributed Algorithm
Details

Data structures

We use the graph object provided by GraphX to build the
residual graph

Edges and flows are stored in a RDD which will be updated at
each iteration (each time we find a path)

The path found in the residual graph is stored in an array of
size O(n) that will be broadcasted
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Finding the shortest path in Pregel

Vertex attribute: (d , c , id)

d : distance from source s

c : minimum capacity the node has seen so far

id : node from which previous message was received

Each node propagates its id, the minimum capacity found so
far and the distance from the source

Once we reached the target t, we can backtrack to find the
actual path

If two paths have the same length, we choose the one with
maximum capacity (flow)
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Finding the shortest path in Pregel

Communication cost

Because the state of a node is changed once at most, there will be
at most one message sent per edge: O(m).

Runtime

Initializing vertices: O(n).
Pregel: #messages/#machines, i.e. O(mk ).
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Updating the residual graph

Algorithm 1 Updating the residual graph RG

Each key value pair is of the form ((i , j) : c) Map (input: edge;
output: edge):

if P contains edge (i , j) in RG :

emit ((i , j) : c − fmax)
emit ((j , i) : fmax)

else: emit ((i , j) : c) (no changes)

Reduce: sum
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Updating the residual graph

Shuffle size

Map operation emits at most 2 values per edge: O(m).

Runtime

Reduce sums at most 2 values for each edge along the path. But
since no a priori knowledge of path: O(mk ).
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Communication cost

Step Cost

Shortest path O(m)
Broadcast O(nk)
Residual graph update O(m)

Table: Communication cost
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Runtime

Step Sequential Distributed

Shortest path O(m) O(m/k)
Path building O(n) O(n)
Broadcast 0 O(n log(k))
Residual graph update O(m) O(m/k)
Flow update O(m) O(m/k)

Table: Runtime
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Comparison with sequential algorithm

Number of iterations

Algorithm terminates after min(c ,m(n − 1)) iterations where c is
the max-flow. For large graphs usually c � m(n − 1)

Sequential algorithm

Runtime: O(cm)

Distributed algorithm

Runtime: O(cm/k) +O(cn log k)

Communication cost: O(cm) +O(cnk)
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Some experimental results
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Conclusion

Problem scales on m (n has to fit on a single machine)

Runtime optimal: O(cm)→ O( cmk )

Communication cost potentially high, but not for vast
majority of applications

With optimal k = m/n. Runtime: O(cn log(m/n)).
Communication cost: O(cm)

Largest graph tested: half a million edges
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