Distributed Max-flow algorithm

Benoît Dancoisne, Emilien Dupont, William Zhang

 $\{\texttt{benoitd}, \texttt{edupont}, \texttt{wzhang4}\}$ @stanford.edu

Stanford University CME323 Final project

June 1, 2015

Distributed Max-flow

- **→** → **→**

Overview

1 Edmonds-Karp algorithm for max-flow

- Single Machine Algorithm
- Distributed Algorithm
- Details

- Communication cost
- Runtime

Single Machine Algorithm Distributed Algorithm Details

Edmonds-Karp algorithm for max-flow

- We increment the flow from *s* to *t* by finding a flow-augmenting path
- We do this by finding a path in the residual graph
- The total flow is increased by the maximum capacity found on our path
- Maximal flow is found when there are no more flow-augmenting paths
- Note that we can lower the flow on a particular edge to favor another path

Single Machine Algorithm Distributed Algorithm Details

Residual graph toy example

< □ > <

э

Single Machine Algorithm Distributed Algorithm Details

Residual graph toy example

< □ > <

э

Single Machine Algorithm Distributed Algorithm Details

Residual graph toy example

< □ > <

Single Machine Algorithm Distributed Algorithm Details

Assumptions and Methods

- n vertices: can fit on a single machine
- *m* edges: too large to fit
- Integer edge capacities
- Use Pregel and MapReduces to distribute

- **→** → **→**

Single Machine Algorithm Distributed Algorithm Details

Distributed max-flow

Initialization:

- Set flows in all edges to 0
- Set residual graph R_G equal to initial graph

While there is a path from s to t in R_G :

- Find the shortest path P between s and t in R_G
- Find max flow f_{max} you can push along P
- Broadcast P
- Update flows
- Update R_G using P and f_{max}

Single Machine Algorithm Distributed Algorithm Details

Data structures

- We use the graph object provided by *GraphX* to build the residual graph
- Edges and flows are stored in a RDD which will be updated at each iteration (each time we find a path)
- The path found in the residual graph is stored in an array of size O(n) that will be broadcasted

Single Machine Algorithm Distributed Algorithm Details

- Vertex attribute: (*d*, *c*, *id*)
- *d*: distance from source *s*
- c: minimum capacity the node has seen so far
- id: node from which previous message was received

Single Machine Algorithm Distributed Algorithm Details

- Vertex attribute: (*d*, *c*, *id*)
- d: distance from source s
- c: minimum capacity the node has seen so far
- id: node from which previous message was received
- Each node propagates its id, the minimum capacity found so far and the distance from the source

Single Machine Algorithm Distributed Algorithm Details

- Vertex attribute: (*d*, *c*, *id*)
- d: distance from source s
- c: minimum capacity the node has seen so far
- id: node from which previous message was received
- Each node propagates its id, the minimum capacity found so far and the distance from the source
- Once we reached the target *t*, we can backtrack to find the actual path

Single Machine Algorithm Distributed Algorithm Details

- Vertex attribute: (*d*, *c*, *id*)
- d: distance from source s
- c: minimum capacity the node has seen so far
- id: node from which previous message was received
- Each node propagates its id, the minimum capacity found so far and the distance from the source
- Once we reached the target *t*, we can backtrack to find the actual path
- If two paths have the same length, we choose the one with maximum capacity (flow)

Single Machine Algorithm Distributed Algorithm Details

Finding the shortest path in Pregel

Communication cost

Because the state of a node is changed once at most, there will be at most one message sent per edge: $\mathcal{O}(m)$.

Runtime

Initializing vertices: $\mathcal{O}(n)$. Pregel: #messages/#machines, i.e. $\mathcal{O}(\frac{m}{k})$.

Distributed Max-flow

< /₽ > < 三

Single Machine Algorithm Distributed Algorithm Details

Updating the residual graph

Algorithm 1 Updating the residual graph R_G

Each key value pair is of the form ((i, j) : c) Map (input: edge; output: edge):

- if P contains edge (i, j) in R_G :
 - emit $((i,j): c f_{max})$
 - emit $((j, i) : f_{max})$
- else: emit ((i,j):c) (no changes)

Reduce: sum

▲ □ ▶ ▲ □ ▶ ▲

Single Machine Algorithm Distributed Algorithm Details

Updating the residual graph

Shuffle size

Map operation emits at most 2 values per edge: $\mathcal{O}(m)$.

Runtime

Reduce sums at most 2 values for each edge along the path. But since no a priori knowledge of path: $\mathcal{O}(\frac{m}{k})$.

- ▲ - □

Communication cost Runtime

Communication cost

Step	Cost
Shortest path	$\mathcal{O}(m)$
Broadcast	$\mathcal{O}(nk)$
Residual graph update	$\mathcal{O}(m)$

Table: Communication cost

Distributed Max-flow

æ

《口》《聞》《臣》《臣》

Communication cost Runtime

Runtime

Step	Sequential	Distributed
Shortest path	$\mathcal{O}(m)$	$\mathcal{O}(m/k)$
Path building	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Broadcast	0	$\mathcal{O}(n\log(k))$
Residual graph update	$\mathcal{O}(m)$	$\mathcal{O}(m/k)$
Flow update	$\mathcal{O}(m)$	$\mathcal{O}(m/k)$

Table: Runtime

Distributed Max-flow

*ロト *部ト *注ト *注ト

æ

Comparison with sequential algorithm

Number of iterations

Algorithm terminates after min(c, m(n-1)) iterations where c is the max-flow. For large graphs usually $c \ll m(n-1)$

Sequential algorithm

• Runtime: $\mathcal{O}(cm)$

Distributed algorithm

- Runtime: $\mathcal{O}(cm/k) + \mathcal{O}(cn\log k)$
- Communication cost: $\mathcal{O}(cm) + \mathcal{O}(cnk)$

Communication cost Runtime

Some experimental results

Distributed Max-flow

Conclusion

- Problem scales on *m* (*n* has to fit on a single machine)
- Runtime optimal: $\mathcal{O}(cm) \rightarrow \mathcal{O}(\frac{cm}{k})$
- Communication cost potentially high, but not for vast majority of applications
- With optimal k = m/n. Runtime: $\mathcal{O}(cn \log(m/n))$. Communication cost: $\mathcal{O}(cm)$
- Largest graph tested: half a million edges

▲ □ ▶ ▲ □ ▶ ▲