
Stanford University

CME 323 Final Project

A Distributed Solver for
Kernalized SVM

Haoming Li

Bangzheng He

haoming@stanford.edu

bzhe@stanford.edu

GitHub Repository

https://github.com/CME323Project/Spark_kernel_svm.git

June 3, 2015

https://github.com/CME323Project/Spark_kernel_svm.git


Contents

1 Introduction 2

1.1 Kernalized Support Vector Machine . . . . . . . . . . . . . . . 2

1.2 Optimization Methods for SVM . . . . . . . . . . . . . . . . . 3

2 Solving SVM using SGD method 3

2.1 S-pack SVM algorithm on single machine . . . . . . . . . . . . 4

2.2 Parallel algorithm: P-pack . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Distributed Hash Table . . . . . . . . . . . . . . . . . . 6

2.2.2 Packing Strategy . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Implementation of P-pack SVM in Apache Spark . . . 7

2.3 Analysis of the Algorithm Efficiency . . . . . . . . . . . . . . . 8

2.3.1 Computational Cost . . . . . . . . . . . . . . . . . . . 8

2.3.2 Communication Cost . . . . . . . . . . . . . . . . . . . 10

3 Empirical Results 11

3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Packing Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Conclusion 13

1



1 Introduction

Support vector machine (SVM) is a widely used supervised learning model,

originally for binary classification. But it can also be generalized for mul-

ticlass classification and regression problems. In this report we only focus

on binary classification with SVM, since it’s easy to start with and not hard

to generalize to other problems. We first look at a sequential algorithm for

solving SVM using stochastic gradient descent (SGD) method, and the corre-

sponding parallel algorithm. Then we try to implement the parallel algorithm

in Apache Spark. Finally we experiment with several tuning parameters and

conclude the project.

1.1 Kernalized Support Vector Machine

Like many machine learning methods, the kernalized support vector machine

can be formulated as a convex optimization problem:

min
w∈Rd

f(w) =
λ

2
‖w‖22 +

1

m

m∑
i=1

max{0, 1− yi〈w, φ(xi)〉}

where
{

(xi, yi)|xi ∈ Rd, yi ∈ {−1, 1}
}m
i=1

. xi are the training data features

and yi are the corresponding labels taking value either -1 or 1. φ(xi) is a

mapping function.

This convex optimization objective function f(w) has two parts: a 2-norm

regularization that controlling complexity of the model and a empirical loss

function measuring the error of the model on the training data. The regu-

larization parameter λ defines the trade-off between minimizing the training

error and minimizing model complexity.

For this convex problem, the Lagrange dual objective has the form

LD = −1

2

m∑
i,j=1

yiyjαiαj〈φ(xi), φ(xj)〉+
m∑
i=1

αi

According to KKT condition, the optimal weights w can be written as a
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superposition of training data:

w =
m∑
i=1

αiyiφ(xi)

Hence we have

〈w, φ(x)〉 =
m∑
i=1

αiyi 〈φ(xi), φ(x)〉

Therefore we need not to specify the mapping φ(xi) at all, but require only

knowledge of the kernel function:

K(xi, xj) = 〈φ(xi), φ(xj)〉

Popular kernels include radial basis function (rbf), dth-Degree polynomial

kernels, etc.

rbf : K(xi, xj) = exp(−γ‖xi − xj‖2)

polynomial : K(xi, xj) = (1 + 〈xi, xj〉)d

1.2 Optimization Methods for SVM

The optimization methods for training SVM models generally fall into three

categories. The interior Point Method(IPM) minimizes the dual objective,

which is a convex quadratic programming problem and can be solved via the

primal-dual interior point method. Sequential Minimal Optimization(SMO)

decomposes the quadratic programming problem into an inactive part and an

active part. Stochastic Gradient Descent(SGD) method minimizes the primal

objective, in which the gradient is approximated by evaluating on a single

training sample. We will focus on a SGD algorithm and the corresponding

parallelization.

2 Solving SVM using SGD method

In this section we discuss a stochastic gradient descent algorithm proposed

in [1]. The single machine version is called S-pack, and the parallel version

is called P-pack. We also introduce our own implementation in Spark.
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2.1 S-pack SVM algorithm on single machine

The empirical loss in the primal objective:

1

m

m∑
i=1

max{0, 1− yi〈w, φ(xi)〉

averages the hinge loss among all training examples. According to the idea

of SGD, it can be approximated by hinge loss on a single training sample. At

iteration t, randomly pick up a sample (xi, yi), then we have the sub-gradient:

λw − {
yiφ(xi), yi 〈w, φ(xi)〉 < 1

0, otherwise

For faster learning rate, update the predictor w as below:

w ← (1− 1

t
)w + {

yi
λt
φ(xi), yi 〈w, φ(xi)〉 < 1

0, otherwise

And to get closer to the optimum, apply a projection after the update:

w ← min

{
1,

1/
√
λ

‖w‖2

}
We can express w = sv, where s is a scalar and v =

∑
i βiφ(xi). When

performing scaling we can just change the value of s instead of modifying the

each element of w every time. And we store v as key-value pairs (xi, βi).

The pseudo-code of the algorithm is as in algorithm 1.

Training data size m, number of features d(x ∈ Rd). Only line 4 takes at

most O(md) time, other computations run in constant time. And it was ana-

lyzed in [2] that it requires T = O(1/λδε) iterations to get |f(w)−f(w∗)| < ε

with at least 1−δ probability. Thus runtime is O(md/λδε). Since the optimal

λ = O(1/m), total runtime can also be written as O(m2d/δε).

2.2 Parallel algorithm: P-pack

The S-pack algorithm has time complexity in square dependence on the train-

ing sample size m. It is not efficient and has limitation on the size of the
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Algorithm 1: S-pack SVM

Input: λ, T , training data

1 Initialize: H = ∅, s = 1, norm = 0

2 for t = 1, 2, . . . T do

3 Randomly pick training sample (x, y)

4 y′ ← s
∑

(xi,βi)∈H βiK(xi, x)

5 s← (1− 1/t)s

6 if yy′ < 1 then

7 norm← norm+ 2yy′/λt+ (y/λt)2K(x, x)

8 if key x is found in H then

9 (x, β)← (x, β + y/λts)

10 else

11 H ← H
⋃

(x, y/λts)

12 if norm > 1/λ then

13 s← s/
√
λnorm

14 norm← 1/λ

15 return s,H
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training data, but the the algorithm itself suggests possible parallelization,

named P-pack. We address two key points below.

2.2.1 Distributed Hash Table

As we have seen in the previous section, the bottleneck of the algorithm is

the calculation of responses 〈v, φ(x)〉, luckily this can be highly parallelized

with a distributed storage of the key-value pairs (xi, βi).

Now suppose we have p processors and the key-value pairs in H are av-

eragely distributed among all processors. For example, ith processor holds a

subset of H, denoted it by Hi:

Hi =
{

(xij , βij)
}‖Hi‖
j=1

then we can calculate ∑
(xij ,βij )∈Hi

βijK(xij , x)

locally on each processor at the same time and sum up the results across all

processors to speed up the calculation of 〈v, φ(x)〉.
Once a key-value pair (x, β) needs to be updated in certain iterations,

each processor checks whether the key value x exist in its local hash table

Hi. If any processor finds the key, update the corresponding value, otherwise

add this new key-value pair (x, β) to the hash table of the least occupied

processor.

2.2.2 Packing Strategy

However, with the distributed storage of the training data (xi, yi) and key-

value pairs (xi, βi), in each iteration there are at least one communication

request among all processors. This can be optimized by packing r iterations

into one round of update, thus reduce the number of communication requests

by a factor of O(r).
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Denote the training sample picked at iteration t, xt, and updated weights

wt. Then, the responses 〈w, φ(x)〉 from tth iteration to (t + r − 1)th can be

written in the form

y′t = � 〈vt, φ(xt)〉
y′t+1 = � 〈vt, φ(xt+1)〉+ �K(xt, xt+1)

y′t+2 = � 〈vt, φ(xt+2)〉+ �K(xt, xt+2) + �K(xt+1, xt+2)

...

y′t+r−1 = � 〈vt, φ(xt+r−1)〉+ �K(xt, xt+r) + · · ·+ �K(xt+r−2, xt+r−1)

Those ”blanks” are some complex coefficients. Therefore we can compute

the most time consuming part 〈vt, φ(xt)〉 , 〈vt, φ(xt+1)〉 , . . . , 〈vt, φ(xt+r−1)〉 at

tth iteration, as well as the pair-wise values K(xi, xj) for t ≤ i < j ≤ t+r−1.

Then at the next r − 1 iteration, there’s no communication request across

processors to calculate responses yi for i = t + 1, . . . , t + r − 1. For more

details please refer to [1]

Now instead of picking only 1 random sample, we can pick r training

samples at each iteration and calculate the updates as described above, then

we only need to implement T/t number of rounds of iterations to achieve the

same result, reducing the number of communication requests by a factor of

O(r). Although the total bits of communication will not be reduced, even

raised a little bit, proper choice of the pack size r will speed up the algorithm

significantly due to the reduction of communication frequency.

2.2.3 Implementation of P-pack SVM in Apache Spark

We make a few assumptions about training data.

1. The feature dimension d is not too big, so that a single data point can

fit in single machine.

2. Data size m can be large, so that they are supposed to be distributed.

Under these assumptions we represent the training data as RDD[LabeledPoint]

in Spark, in which each element has type spark.mllib.regression.LabeledPoint.
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The model, which is a set of support vectors and corresponding La-

grangian dual variables, is also distributed so that the computation par-

allelism is achieved. General RDD is not suitable for this because we want

to make small modifications to the model for lots of times. IndexedRDD,

developed by Berkeley AMPLab, is currently the best thing we have as a dis-

tributed hash table. It can index / modify values given keys more efficiently

than general RDD. Our model is represented as an IndexedRDD[(Long, (La-

beledPoint, Double)] in which each element is a key-value pair: key is a

unique long integer and value is a support vector and corresponding La-

grangian dual variable.

Also notice that in each round of iterations we need to compute pairwise

kernel function for r samples. This is parallelized by first generating a list

of [(i, j) for i = 1 to r and j = i to r], then distribute this list as an RDD,

indicating the allocation of r(r− 1)/2 computations among workers. In each

round of iteration, after broadcasting the sample to all workers each worker

can compute their part according to this allocation RDD, thus parallelism

is achieved. Algorithm 2 is the pseudo code for P-pack algorithm in Spark

framework.

2.3 Analysis of the Algorithm Efficiency

Assume sample data size m, feature dimension d, regularization parameter

λ, packing size r, running T iterations (T/r rounds of updates), using p

processors.

2.3.1 Computational Cost

In each round:

• Line 5, map and reduce(with combiners) to compute r responses: O(rd·
m
p

) +O(rp)

• Line 6, map to compute pairwise inner-products: O( r
2d
p

)
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Algorithm 2: P-pack SVM in Spark framework

Input: λ, T , r, D (training data rdd)

1 Initialize:

H = IndexedRDD(D.map((x, y) => (idx, x, y, alpha = 0)), s = 1,

norm = 0, A = RDD([(i, j) for i = 1 to r and j = i to r])

2 for t = 1, 2, . . . , T/r do

3 Randomly pick r samples (idx1, x1, y1), . . . , (idxr, xr, yr), broadcast

to all processors

4 for k = 1, . . . , r do

5 y′k ← H.map(h => h.y ∗ h.α ∗K(xk, h.x)).reduce(+)

6 pair ← A.map((u, v) => K(xu, xv)).collect()

7 LocalSet← ∅
8 for k = 1, . . . , r do

9 t′ ← t · r + k ; s← (1− 1/t′)s

10 for l = k + 1, . . . , r do

11 y′l ← (1− 1/t′)y′l

12 if yky
′
k < 1 then

13 norm← norm+ 2yky
′
k/λt+ (y/λt)2pairk,k

14 LocalSet← LocalSet
⋃{

(idxk, xk, yk,
1
λt′s

)
}

15 for l = k + 1, . . . , r do

16 y′l ← y′l + yk
λt′
· pairk,l

17 if norm > 1/λ then

18 s← s√
λ·norm ; norm← 1/λ

19 for l = k + 1, . . . , r do

20 y′l ←
y′l√

λ·norm

21 H ← H.multiput(LocalSet)

22 return s,H

9



• The rest: O(r2)

The total computation cost is:

T

r
·O(

rmd

p
+ rp+

r2d

p
+ r2) = T ·O(

(m+ r)d

p
+ p+ r))

Considering the fact that r = O(m) and optimal λ = O(1/m) and T =

O(1/λδε), we have computational cost:

O((m2d/p+mp) · 1

δε
) +O(mr/δε) (1)

Compared with O(m2d/δε) of single machine, there are two additional terms

that are not ideally scalable with p. One of them even increases with p,

though generally it should be much smaller than the major item.

2.3.2 Communication Cost

In each round:

• Line 3, taking r samples: shuffle O(rd)

• Line 3, broadcasting samples: 1-to-all O(rdp)

• Line 5, all reduce(with combiners) to get estimated responses: all-to-1

O(rp)

• line 6, collect to send all pairwise inner-product to driver: all-to-1 O(r2)

• Line 21, updating parameters: 1-to-1 O(rd)

Summing T
r

rounds of update, we have total communication cost:

T

r
·O(rdp+ r2)

.

Since optimal λ = O(1/m) and T = O(1/λδε), the total communication cost

can also be denoted as:

O((dp+ r)m/δε) (2)

We notice that the total communication cost is also increasing with p,

the number of cores.
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Figure 1: Test accuracy v.s number of iterations trained

3 Empirical Results

We mainly studied 3 aspects of the performance of our implementation. We

are interested in the number of iterations costed before convergence, the affect

of different packing size and the actual performance improved by adding more

cores. All experiments utilize rbf kernel and the parameter γ for the kernel

is set to 1.

3.1 Convergence

Number of iterations cost is a feature of algorithm itself. Studying this is also

a good way to verify the correctness of our implementation. For this part

we use the UCI Adult dataset from LibSVM website and take 18,000 data

points as training set, and a separate 3000 data points test set. There are

123 features. We fix the packing size r = 100, and λ = 0.3, then try different

number of iterations T and compute the corresponding test accuracy. The

result is given by figure 1.

It turned out to converge after 10,000 iterations, which are about half the
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Figure 2: Runtime v.s r

data size. This coincides with T = O(1/m) for choosing optimal regulariza-

tion parameter.

3.2 Packing Size

From (1) and (2) we can see that increasing r will increase both computation

and communication cost. However the number of communications would be

less, so that we can save time cost on latency. Meanwhile the developer of

IndexedRDD also suggests reducing the frequency of updating. Thus there

should be some optimal r. We still use the Adult dataset, set r to different

values and compare the time cost on training. The result is shown in figure

2.

It turns out that the optimal r for our setup is around 200. Notice that

we are running on 4 cores locally, and we believe that level of parallelism,

sample size or feature dimension may all affect the optimal choice of r.
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Figure 3: Runtime v.s p

3.3 Scalability

We are also interest in how the performance scales with number of processors

used. In this part we use the real-sim dataset from LibSVM website, which

has 57,925 training samples and 20,958 features. The training time, when

using 1,2,3 or 4 cores, is shown in figure 3.

We can see that the computation does benefit from adding more cores.

However ideally it should be better than this. One reason is that the Indexe-

dRDD needs to be saved to disk every certain amount of updates (check-

point), which is expensive and unscalable. We also believe that better scal-

ability can be achieved by tuning packing size r for different p.

4 Conclusion

We studied and implemented a SGD algorithm that can solve Kernel SVM for

large dataset and can benefit from parallelism, especially when the number of

processors used are not too large. However the spark component we relies on,

the IndexedRDD, still can be our bottleneck. Meanwhile, Some parameters
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(i.e, T , r ) need to be properly tuned for best performance.

References

[1] Zhu, Zeyuan Allen, et al, ”P-packSVM: Parallel primal gradient descent

kernel SVM”, ICDM, 2009.

[2] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro, ”Pegasos: Pri-

mal Estimated sub-GrAdient SOlver for SVM”, in ICML, 2007.

14


	Introduction
	Kernalized Support Vector Machine
	Optimization Methods for SVM

	Solving SVM using SGD method
	S-pack SVM algorithm on single machine
	Parallel algorithm: P-pack
	Distributed Hash Table
	Packing Strategy
	Implementation of P-pack SVM in Apache Spark

	Analysis of the Algorithm Efficiency
	Computational Cost
	Communication Cost


	Empirical Results
	Convergence
	Packing Size
	Scalability

	Conclusion

