
CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

A Distributed Solver for Kernelized SVM

Haoming Li, Bangzheng He

Stanford ICME

haoming@stanford.edu
bzhe@stanford.edu

June 3, 2015

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Overview

1 SVM and Kernels

2 SGD method on single machine

3 Parallel Kernal SVM

4 Experiments

5 Conclusions

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Support Vector Machines

A widely used supervised learning model, originally for binary
classification.
Model represented as the normal vector of a separating hyper-plane,
w , and has convex objective (primal):

f (w) =
λ

2
‖w‖2

2 +
1

m

m∑
i=1

max{0, 1− yi 〈w , φ(xi)〉}

It has the form 2-norm regularization + empirical loss.{
(xi , yi)|xi ∈ Rd , yi ∈ {−1, 1}

}m
i=1

is the training data.

The lagrange dual function has the form:

LD = −1

2

m∑
i,j=1

yiyjαiαj〈φ(xi), φ(xj)〉+
m∑
i=1

αi

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Kernels

The optimal w can be written as a superposition of training data:

w =
m∑
i=1

αiyiφ(xi)

〈w , φ(x)〉 =
m∑
i=1

αiyi 〈φ(xi), φ(x)〉

Therefore we need not specify the transformation φ(xi) at all, but
require only knowledge of the kernel function:

K(xi , xj) = 〈φ(xi), φ(xj)〉

Popular kernels include radial basis function (rbf), d th-Degree
polynomial kernels, etc.

rbf : K(xi , xj) = exp(−γ‖xi − xj‖2)

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Stochastic Gradient Descent: S-pack Algorithm

Based on stochastic gradient descent, the empirical loss can be
approximated by the hinge loss on a single training sample.

At iteration t, we randomly pick up a sample (xi , yi), then we have
the sub-gradient:

λw − { yiφ(xi), yi 〈w , φ(xi)〉 < 1
0, otherwise

For faster learning rate, update the predictor w :

w ← (1− 1

t
)w + {

yi
λt
φ(xi), yi 〈w , φ(xi)〉 < 1

0, otherwise

w ← min

{
1,

1/
√
λ

‖w‖2

}

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

S-pack sequential algorithm

Input: λ, T , training data
1 Initialize: H = ∅, s = 1, norm = 0
2 for t = 1, 2, . . .T do
3 Randomly pick training sample (x, y)

4 y′ ← s
∑

(xi ,βi)∈H βiK(xi , x)

5 s ← (1− 1/t)s

6 if yy′ < 1 then

7 norm ← norm + 2yy′/λt + (y/λt)2K(x, x)
8 if key x is found in H then
9 (x, β)← (x, β + y/λts)

10 else
11 H ← H

⋃
(x, y/λts)

12 if norm > 1/λ then

13 s ← s/
√
λnorm

14 norm ← 1/λ

15 return s,H

Training data size m, number of features d(x ∈ Rd). Only line 4 take at most O(md) time, other
commands run in constant time.
And it was analyzed in Pegasos[Shalev-Shwartz, Shai, et al.] that it requires T = O(1/λδε) iterations to get
|f (w)− f (w∗)| < ε with at least 1− δ probability.

Total runtime O(md/λδε). Since the optimal λ = O(1/m), total runtime O(m2d/δε)

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Parallel P-pack Algorithm

Assumptions:

The feature dimension d is not too large, that is, a small number of
data points can fit in single machine.

The data size m is large so that it should be distributed as RDD.

The model, i.e., support vectors, are also distributed.

Kernel function K(x1, x2) can be computed in O(d).

Idea: parallelize the computation in each iteration, in particular the
computation of sub-gradient, in which the most costly part is to evaluate
the response of the chosen sample based on the current model.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Parallel P-pack Algorithm

If the current model is stored as RDD[x , y , α], then given any sample
(xi , yi), we can easily compute its response in parallel by broadcasting
- map - all reduce. Then send this response back to the driver and
finish the computation of sub gradient locally on worker, which takes
constant time in spite of m or d or anything.

The tricky part is updating the model. RDDs usually don’t serve well
as distributed hash tables.
Luckily found IndexedRDD: developed by AMPLab, using Long keys
and can efficiently lookup/update elements in RDD by key.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Parallel P-pack Algorithm: packing strategy

Suggested by the author, a packing strategy might help. In each iteration:

Pick r rather than 1 samples at a time.

Compute sub-gradient with respect to these samples sequentially.

update the model with r updates at a time.

Doesn’t reduce the computational cost at all (even increases it a little bit),
but is desirable in practice. (Latency and efficiency of IndexedRDD).

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Parallel P-pack for Kernal SVM

1 Processor i (total number of processors p)
Input: λ, T , r , D (training data rdd)

2 Initialize: H = IndexedRDD(D.map((x, y) => (idx, x, y, alpha = 0)), s = 1, norm = 0
3 for t = 1, 2, . . . , T/r do
4 Randomly pick r samples (idx1, x1, y1), . . . , (idxr , xr , yr), broadcast to all processors

5 for k = 1, . . . , r do
6 y′

k
← H.map(h => h.y ∗ h.α ∗ K (xk , h.x)).reduce(+)

7 Calculate pairu,v ← K (xu, xv) (u = 1, . . . , r v = 1, . . . , r u ≤ v) in distributed manner

8 LocalSet ← ∅
9 for k = 1, . . . , r do

10 t′ ← t · r + k ; s ← (1 − 1/t′)s
11 for l = k + 1, . . . , r do
12 y′

l
← (1 − 1/t′)y′

l

13 if yk y
′
k
< 1 then

14 norm ← norm + 2yk y
′
k
/λt + (y/λt)2pairk,k

15 LocalSet ← LocalSet
⋃{

(idxk , xk , yk ,
1
λt′ s)

}
16 for l = k + 1, . . . , r do
17 y′

l
← y′

l
+

yk

λt′ · pairk,l

18 if norm > 1/λ then
19 s ← s√

λ·norm
; norm ← 1/λ

20 for l = k + 1, . . . , r do

21 y′
l
←

y
′
l√
λ·norm

22 Update H according to LocalSet

23 return s,H

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Computational Cost

Data size m, feature dimension d , regularization parameter λ, packing size r , running T iterations (T/r
rounds of updates), using p processors. In each round:

Line 6, computing contribution to responses by each support vector for r samples: O(rd · m
p

)

Line 6, sum up responses from all processors: O(rp)

Line 9, computing pairwise inner-products: O(r2d
p

)

The rest: O(r2)

The total computation cost is:

T

r
· O(

rmd

p
+ rp +

r2d

p
+ r2) = T · O(

(m + r)d

p
+ p + r))

Considering the fact that r = O(m) and optimal λ = O(1/m) and T = O(1/λδε), we have computational
cost:

O((m2d/p + mp) ·
1

δε
) + O(mr/δε)

Compared with O(m2d/δε) of single machine.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Communication Cost

Data size m, feature dimension d , regularization parameter λ, packing size r , running T iterations (T/r
rounds of updates), using p processors. In each round:

Line 4, taking r samples: shuffle O(rd)

Line 4, broadcasting samples: 1-to-all O(rdp)

Line 6, all reduce(with combiners) to get estimated responses: all-to-1 O(rp)

line 7, collect to send all pairwise inner-product to driver: all-to-1 O(r2)

Line 23, updating parameters: 1-to-1 O(rd)

Summing T
r

rounds of update, we have total communication cost:

T

r
· O(rdp + r2)

.
Since optimal λ = O(1/m) and T = O(1/λδε), the total communication cost can also be denoted as:

O((dp + r)m/δε)

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Empirical results

Using the ”UCI Adult” dataset on LibSVM website. 18,000 training
samples with 123 features. Rbf kernel is used and we study:

Convergence with respect to number of iterations T .

Performance with respect to packing size r .

Scalability with respect to number of processors p.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Convergence

Study convergence: does this algorithm converge at all? How many
iterations does it take? Test accuracy against number of iterations:

We find that this converges after 10000 iterations, about half of the
data size m.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Packing size

Study packing size: given different packing size r , study the runtime:

Empirically the optimal r in our case is around 200.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Scalability

Since we can only run on our laptops, only p = 1 to 4 are tried.

We do benefit from adding cores. We believe better scalability can be
achieved if tuning packing size r for different p.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Conclusions

We studied and implemented a SGD algorithm that can solve
Kernel SVM and can benefit from adding more machines,
especially when there are not already too many machines.

Some parameters (i.e, T , r) need to be properly set for best
performance.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

References

Zhu, Zeyuan Allen, et al (2009)

P-packSVM: Parallel primal gradient descent kernel SVM.

Data Mining, 2009. ICDM’09 .

Shalev-Shwartz, Shai, et al. (2011)

Pegasos: Primal estimated sub-gradient solver for svm.

Mathematical programming 127.1 (2011): 3-30.

CME 323
Project

Haoming Li,
Bangzheng He

SVM and
Kernels

SGD method
on single
machine

Parallel Kernal
SVM

Experiments

Conclusions

Thank you!

	SVM and Kernels
	SGD method on single machine
	Parallel Kernal SVM
	Experiments
	Conclusions

