Distributed Deep Q-Learning

Hao Yi Ong

joint work with K. Chavez, A. Hong

Stanford University

Box, 6/3/15
Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion
Motivation

▶ long-standing challenge of reinforcement learning (RL)
 – control with high-dimensional sensory inputs (e.g., vision, speech)
 – shift away from reliance on hand-crafted features

▶ utilize breakthroughs in deep learning for RL \([M^{+13}, M^{+15}]\)
 – extract high-level features from raw sensory data
 – learn better representations than handcrafted features with neural
 network architectures used in supervised and unsupervised learning

▶ create fast learning algorithm
 – train efficiently with stochastic gradient descent (SGD)
 – distribute training process to accelerate learning \([DCM^{+12}]\)
Success with Atari games
Theoretical complications

Deep learning algorithms require:

- huge training datasets
 - sparse, noisy, and delayed reward signal in RL
 - delay of $\sim 10^3$ time steps between actions and resulting rewards
 - cf. direct association between inputs and targets in supervised learning

- independence between samples
 - sequences of highly correlated states in RL problems

- fixed underlying data distribution
 - distribution changes as RL algorithm learns new behaviors
Goals

distributed deep RL algorithm

▶ robust neural network agent
 – must succeed in challenging test problems

▶ control policies with high-dimensional sensory input
 – obtain better internal representations than handcrafted features

▶ fast training algorithm
 – efficiently produce, use, and process training data
Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion
Playing games

Objective: learned policy maximizes future rewards

\[R_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}, \]

- discount factor \(\gamma \)
- reward change at time \(t' \ r_{t'} \)
State-action value function

- basic idea behind RL is to estimate

\[Q^*(s, a) = \max_{\pi} \mathbb{E}[R_t \mid s_t = s, a_t = a, \pi], \]

where \(\pi \) maps states to actions (or distributions over actions)

- optimal value function obeys Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right], \]

where \(\mathcal{E} \) is the MDP environment
Value approximation

- typically, a linear function approximator is used to estimate Q^*

$$Q(s, a; \theta) \approx Q^*(s, a),$$

which is parameterized by θ

- we introduce the Q-network
 - nonlinear neural network state-action value function approximator
 - “Q” for Q-learning
Q-network

- trained by minimizing a sequence of loss functions

$$L_i (\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right],$$

with

- iteration number i

- target $y_i = \mathbb{E}_{s' \sim \mathcal{E}} [r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) | s,a]$

- “behavior distribution” (exploration policy) $\rho(s,a)$

- architecture varies according to application
Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion
Preprocessing

raw screen → downsample + grayscale → final input
Network architecture

Convolution

Input Layer

4 frames

8 x 8

84 x 84

1st hidden

4 x 4

20 x 20

2nd hidden

9 x 9

3rd hidden (256 fully connected)

32 filters

Fully connected

Output (actions)

Nodes: 84 x 84 x 4 20 x 20 x 16 9 x 9 x 32 256 4

Weights: 8 x 8 x 4 x 16 4 x 4 x 16 x 32 9 x 9 x 32 x 256 256 x 4

Serial algorithm
Convolutional neural network

- biologically-inspired by the visual cortex
- CNN example: single layer, single frame to single filter, stride = 1
Stochastic gradient descent

- optimize Q-network loss function by gradient descent
 \[Q(s, a; \theta) := Q(s, a; \theta) + \alpha \nabla_{\theta} Q(s, a; \theta), \]

 with
 - learning rate \(\alpha \)

- for computational expedience
 - update weights after every time step
 - avoid computing full expectations
 - replace with single samples from \(\rho \) and \(\mathcal{E} \)
Q-learning

\[Q(s, a) := Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right) \]

- model free RL
 - avoids estimating \(\mathcal{E} \)

- off-policy
 - learns policy \(a = \arg\max_a Q(s, a; \theta) \)
 - uses behavior distribution selected by an \(\epsilon \)-greedy strategy
Experience replay

a kind of short-term memory

▶ trains optimal policy using “behavior policy” (off-policy)
 – learns policy $\pi^*(s) = \arg\max_a Q(s, a; \theta)$
 – uses an ϵ-greedy strategy (behavior policy) for state-space exploration

▶ store agent’s experiences at each time step

$$e_t = (s_t, a_t, r_t, s_{t+1})$$

 – experiences form a replay memory dataset with fixed capacity
 – execute Q-learning updates with random samples of experience
Serial deep Q-learning

given replay memory \mathcal{D} with capacity N
initialize Q-networks Q, \hat{Q} with same random weights θ
repeat until timeout
 initialize frame sequence $s_1 = \{x_1\}$ and preprocessed state $\phi_1 = \phi(s_1)$ for $t = 1, \ldots, T$
 1. select action $a_t = \begin{cases} \max_a Q(\phi(s_t), a; \theta) & \text{w.p. } 1 - \epsilon \\ \text{random action} & \text{otherwise} \end{cases}$
 2. execute action a_t and observe reward r_t and frame x_{t+1}
 3. append $s_{t+1} = (s_t, a_t, x_{t+1})$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 4. store experience $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 5. uniformly sample minibatch $(\phi_j, a_j, r_j, \phi_{j+1}) \sim \mathcal{D}$
 6. set $y_j = \begin{cases} r_j & \text{if } \phi_{j+1} \text{ terminal} \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta) & \text{otherwise} \end{cases}$
 7. perform gradient descent step for Q on minibatch
 8. every C steps reset $\hat{Q} = Q$
Theoretical complications

depth learning algorithms require

- huge training datasets
- independence between samples
- fixed underlying data distribution
Deep Q-learning

avoids theoretical complications

- greater data efficiency
 - each experience potentially used in many weight updates

- reduce correlations between samples
 - randomizing samples breaks correlations from consecutive samples

- experience replay averages behavior distribution over states
 - smooths out learning
 - avoids oscillations or divergence in gradient descent
Cat video
Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion
Data parallelism

downpour SGD: generic asynchronous distributed SGD

\[
\theta := \theta + \alpha \Delta \theta
\]
Model parallelism

on each worker machine

➤ computation of gradient is pushed down to hardware
 – parallelized according to available CPU/GPU resources
 – uses the Caffe deep learning framework

➤ complexity scales linearly with number of parameters
 – GPU provides speedup, but limits model size
 – CPU slower, but model can be much larger
Implementation

- Data shards are generated locally on each model worker in real-time
 - Data is stored independently for each worker
 - Since game emulation is simple, generating data is fast
 - Simple fault tolerance approach: regenerate data if worker dies

- Algorithm scales very well with data
 - Since data lives locally on workers, no data is sent

- Update parameter with gradients using RMSprop or AdaGrad

- Communication pattern: multiple asynchronous all-reduces
 - One-to-all and all-to-one, but asynchronous for every minibatch
Implementation

- bottleneck is parameter update time on parameter server
 - e.g., if parameter server gradient update takes 10 ms, then we can only do up to 100 updates per second (using buffers, etc.)

- trade-off between parallel updates and model staleness
 - because worker is likely using a stale model, the updates are “noisy” and not of the same quality as in serial implementation
Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion
Evaluation
Snake

- **parameters**
 - snake length grows with number of apples eaten (+1 reward)
 - one apple at any time, regenerated once eaten
 - $n \times n$ array, with walled-off world (-1 if snake dies)
 - want to maximize score, equal to apples eaten (minus 1)

- **complexity**
 - four possible states for each cell: \{empty, head, body, apple\}
 - state space cardinality is $O \left(n^4 2^{n^2} \right)$ (-ish)
 - four possible actions: \{north, south, east, west\}

Numerical experiments
Software

- at initialization, broadcast neural network architecture
 - each worker spawns Caffe with architecture
 - populates replay dataset with experiences via random policy

- for some number of iterations:
 - workers fetch latest parameters for Q network from server
 - compute and send gradient update
 - parameters updated on server with RMSprop or AdaGrad (requires $O(p)$ memory and time)

- Lightweight use of Spark
 - shipping required files and serialized code to worker machines
 - partitioning and scheduling number of updates to do on each worker
 - coordinating identities of worker/server machines
 - partial implementation of generic interface between Caffe and Spark

- ran on dual core Intel i7 clocked at 2.2 GHz, 12 GB RAM

Numerical experiments
Complexity analysis

- **model complexity**
 - determined by architecture; roughly on the order of number of parameters

- **gradient calculation via backpropagation**
 - distributed across worker’s CPU/GPU, linear with model size

- **communication time and cost**
 - for each update, linear with model size
compute/communicate time scales linearly with model size

- process is compute-bound by gradient calculations
- upper bound on update rate inversely proportional to model size
- with many workers in parallel, independent of batch size
Serial vs. distributed

- performance scales linearly with number of workers
Example game play

Figure: Dumb snake.

Figure: Smart snake.
Summary

- deep Q-learning \([M^{+13}, M^{+15}]\) scales well via DistBelief \([DCM^{+12}]\)

- asynchronous model updates accelerate training despite lower update quality (vs. serial)
questions, code, ideas, go-karting, swing dancing, ...

haoyi.ong@gmail.com
References

