All-Pairs-Shortest-Paths in Spark

Charles Zheng, Jingshu Wang and Arzav Jain

Stanford University

$$
\text { June 1, } 2015
$$

Problem

- Weighted graph $G=(V, E)$ with n vertices
- Compute $n \times n$ matrix of distances S where

$$
S_{i j}=\text { weight of shortest path from } i \text { to } j
$$

Floyd-Warshall: Single Core

$S_{i j}^{k}$ - shortest path distance from i to j using intermediate nodes 1 to k

$$
S_{i j}^{k}=\left\{\begin{array}{cc}
w_{i j} & k=0 \\
\min \left(S_{i j}^{k-1}, S_{i k}^{k-1}+S_{k j}^{k-1}\right) & k>0
\end{array}\right.
$$

$$
S \leftarrow \min (S, S(:, k) \otimes S(k,:))
$$

Floyd-Warshall

Initial input

Floyd-Warshall

Iteration 1

$$
\left(\begin{array}{llllll}
0 & 1 & & & & 1 \\
1 & 0 & 1 & & & 2 \\
& 1 & 0 & 1 & & \\
& & 1 & 0 & 1 & \\
& & & 1 & 0 & 1 \\
1 & 2 & & & 1 & 0
\end{array}\right)
$$

Floyd-Warshall

Iteration 2

$$
\left(\begin{array}{llllll}
0 & 1 & 2 & & & 1 \\
1 & 0 & 1 & & & 2 \\
2 & 1 & 0 & 1 & & 3 \\
& & 1 & 0 & 1 & \\
& & & 1 & 0 & 1 \\
1 & 2 & 3 & & 1 & 0
\end{array}\right)
$$

Floyd-Warshall

Iteration 3

$$
\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & & 1 \\
1 & 0 & 1 & 2 & & 2 \\
2 & 1 & 0 & 1 & & 3 \\
3 & 2 & 1 & 0 & 1 & 4 \\
& & & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 1 & 0
\end{array}\right)
$$

Floyd-Warshall

Iteration 4

$$
\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 1 \\
1 & 0 & 1 & 2 & 3 & 2 \\
2 & 1 & 0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 & 1 & 4 \\
4 & 3 & 2 & 1 & 0 & 1 \\
1 & 2 & 3 & 4 & 1 & 0
\end{array}\right)
$$

Floyd-Warshall

Iteration 5

$$
\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 1 \\
1 & 0 & 1 & 2 & 3 & 2 \\
2 & 1 & 0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 & 1 & 2 \\
4 & 3 & 2 & 1 & 0 & 1 \\
1 & 2 & 3 & 2 & 1 & 0
\end{array}\right)
$$

Floyd-Warshall

Iteration 6, (terminate)

$$
\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 2 & 1 \\
1 & 0 & 1 & 2 & 3 & 2 \\
2 & 1 & 0 & 1 & 2 & 3 \\
3 & 2 & 1 & 0 & 1 & 2 \\
2 & 3 & 2 & 1 & 0 & 1 \\
1 & 2 & 3 & 2 & 1 & 0
\end{array}\right)
$$

Floyd-Warshall

- Cost: $O\left(n^{3}\right)$ operations (single-core)
- Takes n sequential iterations

Problems with Floyd-Warshall

- FW updates by considering 1 new vertex at a time
- Result: n iterations
- High \# iterations = latency in distributed setting
- Solomonik et al. (2013) show how to "block" FW iterates
- We modify their block-based approach for Spark

Block APSP

Number of vertices $=n$, Block Size $=b$

Block APSP

Iteration 1A: Compute APSP within V_{1} (block 1 on diagonal)

Block APSP

Iteration 1B: Update weights of all paths to/from V_{1}

Block APSP

Iteration 1C: Update weights of all paths starting and ending in V_{-1} using

$$
S_{i j} \leftarrow \min \left(S_{i j}, S_{i k} \otimes S_{k j}\right) \quad \text { where } k=1
$$

Block APSP

Iteration 2: Do the same for block 2 on the diagonal

Block APSP: Single-core

- Block size $b, n / b$ iterations
- A-step (all paths within block): $O\left(b^{3}\right)$
- B-step (all paths to/from block): $O\left(n b^{2}\right)$
- C-step (all paths through block): $O\left(n^{2} b\right)$
- Iteration: $O\left(n^{2} b+n b^{2}+b^{3}\right)$
- Total: $O\left(\frac{n}{b}\left(n^{2} b+n b^{2}+b^{3}\right)\right)=O\left(n^{3}+n^{2} b+n b^{2}\right)$
- The case $b=1$ is almost the same as Floyd-Warshall

Distributing Block APSP

Problem setup

- Input format: Given by dense adjacency matrix, stored as BlockMatrix S with block size b
- Number of vertices n is large
- Output format: same
- Each block fits in memory

Distributing Block APSP

For $i=1, \ldots, n / b$

- A-step: (update all paths within block)
- One-to-one communication
- Computation $O\left(b^{3}\right)$
- Bandwidth $O\left(b^{2}\right)$
- Runtime $O\left(b^{3}\right)$

Distributing Block APSP

- B-step: (update all paths to/from block)
- One-to-all communication
- Computation per worker: $O\left(n b^{2} / \sqrt{p}\right)$
- Bandwidth $O\left(b^{2} \sqrt{p}\right)$
- Runtime $O\left(\log (p) b^{2}+b^{2} n / \sqrt{p}\right)$

Distributing Block APSP

- C-step: (update all paths through block)
- All-to-all communication
- Computation per worker: $O\left(n^{2} b / p\right)$
- Bandwidth: $O(n b \sqrt{p})$
- Runtime: $O\left(n^{2} b / p+n b\right)$

Distributing Block APSP

Overall cost:

- Total computational cost is $O\left(n^{3}+n^{2} b\right)$ divided evenly among workers plus $O\left(n b^{2}\right)$ on driver
- Total communication cost: $O\left(n^{2} \sqrt{p}\right)$
- Total runtime: $O\left(\frac{n^{3}}{p}+\frac{n^{2} b}{\sqrt{p}}+n^{2}+n b^{2}+n b \log (p)\right)$

Ignoring latency, optimal $b=1$
With latency, runtime is

$$
\frac{n}{b} L+K\left(n b^{2}+\left(n \log (p)+\frac{n^{2}}{\sqrt{p}}\right) b+\frac{n^{3}}{p}+n^{2}\right)
$$

so $b \neq 1$ may be optimal

More Implementation details on Spark

- Grid Partitioner
- Checkpointing

Results

$$
\mathrm{n}=500, \mathrm{p}=4 ; \text { Local }[4] 8 \mathrm{~GB}
$$

Thank you!

