
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 4, 04/08/2015. Scribed by Eric Lax, Andreas Santucci, Charles Zheng.

Lecture Overview

Today we will talk about what happens when you submit a job to a Spark cluster. What does this

involve?

• Splitting up your data into as many parallelizable chunks as possible

• Serializing and shipping code to the clusters

• Scheduling computations which have been serialized to run where data is stored, to minimize

network communication costs

• Shuffling

• Broadcasting

• Bindings

Overview - How Spark Ships Code

To see a brief overview of the life of a Spark Program, consult the lecture slides, page 4. The

general idea is that we first create some input RDD’s from external data, we then transform them

to define new RDD’s using transformations such as filter() or map(), we cache any intermediate

results that will need to be reused, and then we launch actions such as count() or collect()

which actually kick off computations. Because these actions are lazily evaluated, Spark optimizes

them ahead of time.

Most actions are optimized by a sort, especially those which involve all-to-all communication. If

we can sort our data by machine, we can then perform group-by and reduce-by operations efficiently.

Representing an RDD How does the process flow through Spark? When an RDD is created by

a driver, we implicitly construct a Directed Acyclic Graph. The DAG is typically very small, on the

order of several kilobytes, and consists of pointers to files and closures which have been serialized.

Within the DAG, some tasks are embarassingly parallel, but others depend on each other. Spark

figures out which parts can be computed in parallel, and which must wait for others to finish. See

slide 10.

1

http://stanford.edu/~rezab/dao

Drivers and Executors When Spark optimizes code internally, it splits it into stages, where

each stage consists of many little tasks. The stages are determined via standard graph algorithms.

Every task for a given stage is a single-threaded atom of computation consisting of exactly the same

code, just applied to a different set of data. This task level is where fault tolerance is built in. If a

machine dies, the task can be recreated and redone. It’s also possible to build in cluster-manager

fault tolerance. In general, if a driver fails, it must be restarted; it’s preferred to run the drivers

from a reliable machine.

Cluster Managers The driver begins making requests to the cluster manager, which has control

over all machines, and coordinates resources such that they are used efficiently. The cluster manager

informs the driver which worker they may assign, and assigns executors. Examples of cluster

managers included Yarn, Mesos, and the Spark standalone manager. Different companies sometimes

use their own proprietary cluster managers.

The cluster manager assigns machines to tasks based on where the data lies, and in doing so

minimizes the network communication cost. If this cannot be accomplished, the system is willing

to incur some communication costs.

Scope of a Task Tasks can perform non-trivial operations. It may start serving all-to-all com-

munications. Sometimes a task can be a bunch of small computations involving no network com-

munication, and other times it can be non-trivial and involve setting up a small server which ships

data that its responsible for.

One point worth noting is that RDD’s are immutable, which is one of the reasons why Spark is

implemented in Scala. The RDD knows the I.P. addresses for where the data sits. When the driver

requests resources from the cluster manager, it starts with requests which match workers to tasks

which can be performed on their local data store. The workers themselves never communicate with

the Spark context directly.

The whole process we have described can also happen locally on a machine, which is what

happens when Spark is run on a single machine.

Now, we discuss how communication patterns are implemented. From the application designers

point of view, this is the interesting part. Certain actions such groupByKey and joins with inputs

which are not co-partitioned have wide dependencies.

Shuffling

Sorting has been the bread-and-butter of Computer Science for decades. We utilize these advances

in distributed computing by framing any operation which involves all-to-all communications as a

sort. Currently, TimSort is used, because it efficiently manages streams of data between memory

and disk.

Estimating Distribution of Data Across Workers In a distributed environment, we have a

giant data set split across machines. We’d like to sort it such that machine 1 gets the first chunk

2

of data, machine 2 gets the second chunk of data, etc. To do this, we need to know about the

distribution of the data, such that we may determine optimal splitting points in a way that facilitates

uniform data distribution across machines. We desire equally balanced partitions, because in a

distributed computing framework, computation time is dependent on the bottleneck worker. To

do this, we take a uniform sample of each machines’ allocated data, send this information to the

driver, which then determines optimal binning points.

0.
0

0.
1

0.
2

0.
3

0.
4

Splitting Data Evenly Between Machines

data values

de
ns

ity

Machine 1 Machine 2 Machine 3

Figure 1: Estimating Optimal Binning Points

We now have boundaries which determine which machines are responsible for which sets of

data. Each machine sorts their local data using TimSort, and in doing so also builds an inverted

index which describe where the data for each machine “starts and stops”. Since the data is sorted,

these partitions are stored contiguously in disk. When it comes time to serve the data to other

machines, the data can be quickly read from disk with minimal seek time.

Each machine knows all split points, and each machine has sorted their local data. Suppose

machine 5 is querying data, it uses an index which serves for the network. It describes, “for machine

1, your part of the data starts here on disk, and stops here”, using pointers. Note that during the

shuffle process, the amount of data each machine holds can double, because machines are serving

and querying data at the same time. Each machine pages to disk as much as possible, since data

can’t be stored in memory on any one machine, but we have sorted our data in a way that lets us

write to disk in contiguous bins.

3

Machine 1

Machine 5

IndexREAD

WRITE

11 GB/s

1GB/s Network

3GB/s

from Disk

to Disk

Figure 2: Distributed Sort, when done properly, is bottle-necked by network transmission rate

Joins and Sorts What are we doing in a join? We try to find keys that are the same. How do

we do this? We dump the data from different sources into one area, sort them, and then the keys

that are the same show up next to each other. Ideally, we’d like to avoid shuffling our RDD’s if one

of them is small. We will next look at interesting communication patterns which are not all-to-all.

Map Side Join If one side of the join is really small (e.g. 100 megabytes), we could have the

entire array of data sent to each machine, which can then merge the results with their larger RDD.

That is, we look at all the little parts of an RDD and intersect each locally with the entire other

array. When the size of data being transmitted is very small, we use broadcasting.

Broadcasting Take any Scala object which is not too large, which is serializable, and send it

to all machines. These items are immutable by construction. Broadcasting lets us work on a per-

machine basis. Typically, each machine contains all data and everything it needs. Broadcasting

makes it at the node level. Such that each machine only gets one copy of the data being sent

around. This is useful in machine learning, when models can sometimes be as large as a gigabyte.

Bit Torrent Broadcasting The naive way of broadcasting is having one machine communicate

all other machines. This method leads to network saturation and increased wait times. Instead,

start out with data sitting on the driver, then send out the data to as many nodes as the network

can tolerate, and each of the recipients repeats this process, leading to exponential growth. The

branching process depends on how much network capacity is available. This is called bit-torrent

broadcasting.

4

Naive Broadcasting

Driver

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6

Figure 3: Naive Broadcasting

Bit Torrent Broadcast
Branching Factor Exponential

Driver

Machine 1 Machine 2 Machine 3

Machine 4 Machine 5 Machine 6 Machine 7 Machine 8 Machine 9 Machine 10 Machine 11 Machine 12

Figure 4: Bit-Torrent Broadcasting

Broadcast Rules Broadcast objects must be created using a Spark context, and they must be

immutable. The broadcast is accessed within a closure using a .value notation.

Replicated Join Suppose we have a small RDD, which is so small it’s just an array. We may

broadcast this data to all machines. Suppose we have another piece of data which is very large,

5

which must be stored in an RDD. See slide 21. With a small array, each machine gets the entire

array available to them. They can then easily see where the intersection is with their data and the

entire array. There is no communication cost involved once the action is kicked off.

Broadcasting for Optimization See slide 23. Take an optimization problem we saw in Lecture

2. If we don’t broadcast, each machine as part of the task must obtain a copy of the entire array,

since the closure must contain all necessary information to perform the task. Since we often have

giant models, sending out all this information creates unnecessarily large tasks. Therefore, we may

broadcast the model to each machine, which saves huge amounts of space on each machine executing

a task. From then on, each machine simply has a pointer to the broadcast variable, rather than

storing the whole model locally. The data is then sent back to the driver using an “all-to-one”

operation.

Piping Spark

It’s possible to use command line arguments to pipe operations from Spark into other API’s. This

lets us do very complicated things using legacy code we might have. Each worker, for example, can

start up their own instance of Python to help execute their task. Slide 25.

References

[1] R. Zadeh Lecture 4: Shuffling, Communication Patterns.

6

