
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#3

1. Consider solving connected components via the Pregel framework. In general the naive
algorithm works well because the diameter of the graph is low. However for arbitrary
graphs the diameter can be O(n). In this question we consider some attempts to reduce
the worst-case runtime of the naive algorithm.

Recall that at step s of the naive algorithm the state of node i is the maximum ID of
all nodes within distance s of node i.

(a) Suppose we run the naive algorithm, but on the kth iteration we add an edge
between each node i and the node j, with the maximum ID within distance k of
i, if and only if the shortest path between i and j is of length exactly k. Once
these edges have been added the naive algorithm completes running as normal.
Provide an example of a graph with high diameter and give a description of the
node IDs for which this algorithm would add O(n − k) edges (given n is large
and the graph is sparse, this is undesirable as it significantly increases the shuffle
size). Analyze the number of iterations required by this algorithm.

(b) Given the same algorithm in (a) and the same graph, identify the distribution of
IDs that achieves the same number of iterations but with the fewest number of
edges added. Analyze the number of iterations and identify the optimal k.

(c) Now suppose we run the naive algorithm, but on the kth iteration each node i
selects a node j at random within distance k from itself. If the distance from i to
j is greater than αk then we add an edge to the graph; otherwise we do nothing.
Provide an algorithm that would implement this efficiently (assume k and α are
global parameters known to all nodes).

(d) Analyze the expected performance of the algorithm in (c) on the chain graph.
What values of α and k would you suggest? What kind of speed up is possible?

2. For The Perceptron, we proved in class that if all points are scaled to have unit norm,
and the two classes can be separated by margin at least γ, then the perceptron will
make at most 1/γ2 mistakes. Notice that the margin changes depending on the scaling
of the points. Prove that if all the points have norm at most R (i.e. |xi| < R for all
i - all points live within radius R of the origin), then the perceptron makes at most
R2/γ2 mistakes.

3. In class we saw how to compute highly similar pairs of m-dimensional vectors x, y via

sampling in the mappers, where the similarity was defined by cosine similarity: xT y
|x|2|y|2 .

Show how to modify the sampling scheme to work with overlap similarity, defined as

overlap(x, y) =
xTy

min(|x|22, |y|22)

(a) Prove shuffle size is still independent of m, the dimension of x and y.

(b) Assuming combiners are used with B mapper machines, analyze the shuffle size.



4. Assume we are optimizing a separable function of n separable parts, where the function
has p parameters to be tuned.

(a) Recall that Parallel Stochastic Gradient Descent for strongly convex functions
needs one shuffle of the data and one Reduce to compute an average. What is
the total communication cost for this, and how much time does it take when k
processors are used?

(b) Similarly, ADMM requires T iterations, where the communication cost of each
iteration consists of an AllReduce. With T iterations, what is the total commu-
nication cost of ADMM, and how much time does it take?

Finally, notice that the amount of communication performed by ADMM is independent
of n, whereas Parallel SGD is not.

2


