
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#1

1. Download the following materials:

• Slides: http://stanford.edu/~rezab/dao/slides/itas_workshop.pdf

• Spark and Data: http://training.databricks.com/workshop/usb.zip

Now, answer the following questions:

(a) Checkpoint on slide 11

(b) Checkpoint on slide 55

(c) Checkpoint on slide 60. Note: Slide 59 references the file CONTRIBUTING.md which
is not in the provided zip file. Instead, use docs/contributing-to-spark.md.

Submit your code and answers.

2. Warmup question. Assume you are given a typical MapReduce implementation where
you only have to write the Map and Reduce functions. The Map function you will
write takes as input a (key, value) record and returns either a (key, value) record or
nothing. The Reduce function you will write takes as input (key, list of all values for
that key) and returns either a record or nothing. The framework already takes care of
iterating the Map function over all the records in the input file, key-based intermediate
data transfer between Map and Reduce, and storing the returned value of Reduce you
do not have to worry about these. You are now given an input file which contains
comprehensive information about a social network that has asymmetrical (directed)
links, i.e., a network where users follow other users but not necessarily vice-versa (e.g.,
Twitter). Each record in this input file is (userid-a, userid-b), where userid-a follows
userid-b (i.e., points to it). Note that this record tells you nothing about whether or
not userid-b follows userid-a. Write a MapReduce program (i.e., Map function and
Reduce function) that outputs all pairs of userids who follow each other. Pseudocode
is OK.

3. Warmup question. Consider counting the number of occurrences of words in a collection
of documents, where there are only k possible words. Write a MapReduce to achieve
this, and analyze the shuffle size with and without combiners being used (assuming B
mappers are used).

4. The prefix-sum operator takes an array a1, . . . , an and returns an array s1, . . . , sn,
where si =

∑
j≤i

aj. For example starting with an array 17 0 5 32 it returns 17 17 22
54. Describe how to implement prefix-sum in MapReduce, where the input is stored
as 〈i, ai〉. That is, the key is the position in the array, and the value is the value at
that position. Analyze the shuffle size, and the reduce-key space and time complexity.

5. For a given undirected graph G = (V,E) with n vertices and m edges (m ≥ n), we say
that G is shallow if for every pair of vertices u, v ∈ V , there is a path from u to v of
length at most 2 (i.e., using at most two edges).



(a) Give an algorithm that can decide whether G is shallow in O(n2.376) time.

(b) Given an n × r matrix A an r × n matrix B where r ≤ n, show that we can
multiply A and B in O((n/r)2r2.376) time. (Use the fact that we can multiply two
r × r matrices in O(r2.376) time.)

(c) Give an algorithm that can decide whether G is shallow in O(m0.55n1.45) time.
[Hint: consider length-2 paths that go through low-degree vertices and length-2
paths that go through high-degree vertices separately. Use (b)]

6. In a group of 2 or 3 students, decide upon a project and send a maximum 300-word
proposal. The project must have to do with distributed computing and be theoretical
or practical. Examples include implementing distributed versions of algorithms from
your research and/or analyzing their communication costs. Talk to Reza if you need
inspiration or ideas.

2


