
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#4 – Due at the beginning of class Thursday 03/16/17

1. Let G = (V,E) be a c-edge connected graph. In other words, assume that the size
of minimum cut in G is at least c. Construct a graph G′(V,E ′) by sampling each
edge of G with probability p independently at random and reweighing each edge with
weight 1/p. Suppose c > log n, and ε is such that 10 log(n)

cε2
≤ 1. Show that as long as

p ≥ 10 log(n)
cε2

, with high probability the size of every cut in G′ is within (1 ± ε) of the
cut in the original graph G.

2. Let V be a finite set. A function f : 2V → R is submodular iff for any A,B ⊆ V , we
have

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B)

Now consider a graph with nodes V . For any set of vertices S ⊆ V let f(S) denote the
number of edges e = (u, v) such that u ∈ S and v ∈ V −S. Prove that f is submodular.

3. A square integer matrix A is unimodular if and only if its determinant is −1 or 1. A
matrix (not necessarily square) M is totally unimodular iff every square submatrix
has determinant 1, −1, or 0, i.e. every non-singular square submatrix is unimodular.

Show that for a linear program with totally unimodular constraint matrix M and
integral right-hand side c, all extreme points must be integral.

4. Given a list of personnel (n persons) and of list of k vacation periods, each period
spanning several contiguous vacation days. Let Dj be the set of days included in the
jth vacation period. You need to produce a schedule satisfying:

• For a given parameter c, each tech support person should be assigned to work at
most c vacation days total.

• For each vacation period j, each person should be assigned to work at most one
of the days during the period.

• Each vacation day should be assigned a single tech support person.

• For each person, only certain vacation periods are viable.

Describe a polynomial time algorithm to generate an assignment or output that no
assignment exists. Prove correctness.

5. Let G be a graph n nodes and an independent set of size 2n/3. Give a polynomial time
algorithm to find an independent set of size n/3 or greater – find a 1/2-approximation
to the independent set in this graph.

6. The directed cut size is the number of outgoing edges from a cut S. The directed
MAX-CUT problem asks for the cut with maximum directed cut size. Give a 1/4
approximation algorithm for this problem.



7. Online social networks carry a huge potential for online advertising. After a recent
controversy, a popular social networking platform does not allow advertisers to target
the users individually. However, it is allowed to run ads on user communities.

Formally, let X be the set of all users on a social network, and S1, S2, . . . , Sm be
subsets of X, where each Si represents a user community. Notice that a user can
belong to several communities. Suppose the advertiser can afford placing ads on at
most k communities. The goal is to show the ads to as many users as possible, i.e. to
find Si1 , Si2 , . . . , Sik such that | ∪kj=1 Sij | is maximized.

Unfortunately, this problem is NP-hard and therefore we are interested in designing
efficient approximation algorithms to solve it. Consider the following greedy approach:
pick the k communities one at a time, and in each iteration pick the community that
contains the largest number of users that have not been covered yet. In other words,
choose the community that maximizes the current coverage. Show that this greedy
approach yields at least 1− (1− 1/k)k > 1− 1/e fraction of the optimal solution.

Hint: Let xi denote the number of new elements covered by the algorithm in the i-th
set that it picks. Also, let yi =

∑i
j=1 xj, and zi = OPT − yi. Show xi+1 ≥ zi/k and

prove by induction that zi ≤ (1− 1/k)iOPT .

8. The knapsack problem is a very well studied NP-hard combinatorial optimization
problem. Given n items with (positive) weights w1, w2, . . . , wn and associated val-
ues v1, v2 . . . , vn and a bag that can hold total weight W , determine the number of
each items to feasibly place in the bag (total weight chosen at most W ) to maximize
the value of items chosen. Give an algorithm to solve this problem with running time
O(nW ).

Note that in the above version we assume an unlimited supply of every item, but there
are variants with limits on each item that can be solved in the same running time in
a very similar manner. Finally, note that the above running time is not necessarily
polynomial because W is not necessarily polynomial in n.

9. The max weight independent set problem is the following: given an undirected graph
G = (V,E) and a weight function on the vertices w : V → R, output the indepen-
dent set of G with the maximum weight, where we define the weight of the set S as∑

v∈S w(v). Our usual notion of maximum independent set problem is just a special
case of this problem with all weights equal to 1, so this problem is also NP-hard.

However, we can solve it on trees (in fact, if you’re interested, we can solve this problem
on graphs with bounded treewidth). Give a polynomial time algorithm to solve this
problem on trees.
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