
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#1 – Due at the beginning of class Thursday 01/26/17

1. Prove that at least one of G and G is connected. Here, G is a graph on the vertices of
G such that two vertices are adjacent in G if and only if they are not adjacent in G.

Solution: Let G be a disconnected graph in which case we can decompose it into
k connected components C1, C2, . . . , Ck. We want to show that G is connected i.e.
there is a path between any u and v in G. In the case that u and v are in different
components we know that there exist an edge (a path of length one) between them in
G. In the case that u and v are in the same component, say Ci, we can construct a
path of two edges between them in G as follows. Pick any vertex w from some other
component Cj for j 6= i and note that edges {u,w} and {w, v} are in G. Thus u,w, v
is a path in G and hence G is connected.

2. A vertex in G is central if its greatest distance from any other vertex is as small as
possible. This distance is the radius of G.

(a) Prove that for every graph G

rad G ≤ diam G ≤ 2 rad G

Solution: Since the diameter is the longest shortest path in the graph, and the
radius is just a particular shortest path, we have rad G ≤ diam G. Now, since
we can always reach any vertex t by going to the center first, then going to t,
incurring a cost of at most twice the radius, we have diam G ≤ 2 rad G.

(b) Prove that a graph G of radius at most k and maximum degree at most d ≥ 3
has fewer than d

d−2(d− 1)k vertices.

Solution: Let z be a central vertex in G, and let Di denote the set of vertices
of G at distance i from z. Then ∪ki=0Di is all the vertices in the graph. Clearly,
|D0| = 1 and |D1| ≤ d. For i ≥ 1 we have |Di+1| ≤ (d − 1)|Di|, because every
vertex in Di+1 is a neighbor of a vertex in Di (why?), and each vertex in Di has
at most d − 1 neighbors in Di+1 (since it has another neighbor in Di−1). Thus
Di+1 ≤ d(d− 1)i for all i < k by induction, giving

|G| ≤ 1 + d
k−1∑
i=0

(d− 1)i = 1 +
d

d− 2
((d− 1)k − 1) <

d

d− 2
(d− 1)k

3. A random permutation π of the set {1, 2, . . . , n} can be represented by a directed graph
on n vertices with a directed arc (i, πi), where πi is the i’th entry in the permutation.
Observe that the resulting graph is just a collection of distinct cycles.

(a) What is the expected length of the cycle containing vertex 1?

Solution: Consider the construction of the directed graph where we start at
vertex 1. Each step we select an unmarked vertex at random and move to that
vertex. We then mark that vertex before repeating the process. Once this con-
struction marks vertex 1 we have a cycle. Let |C| denote the length of this cycle.
Then:

E(|C|) = 1× 1

n

+ 2× n− 1

n

1

n− 1

+ . . .

+ n× n− 1

n

n− 2

n− 1
. . .

1

2

1

1

=
n∑
i=1

i
1

n

=
1

n

n(n+ 1)

2

=
1

2
(n+ 1)

(b) What is the expected number of cycles?

Solution: Let f(n) denote the expected number of cycles in a graph on n nodes.
It is clear that f(1) = 1.

Consider f(n) given f(n − 1). With probability 1/n the new node permutes to
itself resulting in an expected number of cycles of 1 + f(n − 1) and with the
remaining probability the new node permutes to a node other than itself, this
case then reduces to the n− 1 case. Hence:

f(n) =
1

n

(
1 + f(n− 1)

)
+
n− 1

n
f(n− 1) =

1

n
+ f(n− 1)

It follows recursively that f(n) =
∑n

i=1 1/i which is exactly equal to the nth
harmonic number H(n).

4. Let v1, v2, . . . , vn be unit vectors in Rn. Prove that there exist α1, α2, . . . , αn ∈ {−1, 1}
such that

||α1v1 + α2v2 + . . .+ αnvn||2 ≤
√
n

Solution: This can be shown geometrically using similar ideas to Pythagoras’ Theo-
rem. Consider the cosine rule:

‖αivi + αjvj‖22 = ‖αivi‖22 + ‖αjvj‖22 − 2‖αivi‖2‖αjvj‖2 cos θ

Where θ is the angle between αivi and αjvj.

2

Fix αi. Then we can choose αj such that θ ≤ π/2. Hence cos θ ∈ [0, 1]. It follows that,
given αi we can choose αj such that:

‖αivi + αjvj‖22 ≤ ‖αivi‖22 + ‖αjvj‖22

Applying this result recursively gives:

‖α1v1 + α2v2 + . . .+ αnvn‖22 ≤ ‖α1v1‖22 + ‖α2v2‖22 + . . .+ ‖αnvn‖22
= α2

1‖v1‖22 + α2
2‖v2‖22 + . . .+ α2

n‖vn‖22
= n

||α1v1 + α2v2 + . . .+ αnvn||2 ≤
√
n

5. Consider a graph G on 2n vertices where every vertex has degree at least n. Prove
that G contains a perfect matching.

Solution: We will prove this in a slightly roundabout way: we first show that G
must contain a Hamiltonian path, and then note that a Hamiltonian path contains our
desired perfect matching. (A Hamiltonian path is a path which contains every node
of the graph.) A direct proof of this is possible, but this proof is shorter and more
elegant.

Consider the longest path P = (v1, v2, . . . , vk) in G. All neighbors w of v1 must be
elements of P , otherwise the longer path (w, v1, . . . , vk) in G would contradict the
definition of P . Similarly, all neighbors of vk must also be in P . Now since G is simple,
we note that all ≥ n neighbors of v1 must be distinct and lie in P , thus we have the
bounds n + 1 ≤ k ≤ 2n on the length of P , where in the lower bound we have also
accounted for v1 itself.

We claim that there exists j ∈ {1, . . . , k − 1} such that vj and vj+1 are neighbors
of vk and v1 respectively. Suppose for contradiction that this is not the case. Let
S = {vi|vk ∼ vi} be the set of all neighbors of vk in P . Let T = {vi−1|v1 ∼ vi} be the
set of all path vertices immediately preceding the neighbors of v1 in P . Note that S
and T are disjoint by our assumption. Since v1 and vk have at least n neighbors in P ,
we have

|S|+ |T | ≥ n+ n = 2n ≥ k.

But we also know that both S and T are subsets of {v1, . . . , vk−1} so |S∪T | = |S|+|T | ≤
k − 1, a contradiction. Thus there exists j such that v1 ∼ vj+1 and vk ∼ vj.

Then we have the cycle C = (v1, v2, . . . , vj, vk, vk−1, . . . , vj+1, v1) in G which contains
each vertex of P exactly once. Now we claim that k = 2n; in that case C contains our
desired Hamiltonian path of G. To see this consider a vertex x 6∈ C. Since G is simple
and |C| = k ≥ n + 1, one of the n neighbors of x, call it y must lie in C. But then
cutting either one of the edges in C incident to y and including the edge {x, y} would
result in a path longer than P , contradicting our original longest path assumption.
Thus, our cycle C must have length 2n– it must contain a Hamiltonian path.

3

Finally, we prove that the Hamiltonian path found above contains a perfect matching.
Let the Hamiltonian path P be (v1, v2, . . . , v2n). Choose the edges (v1, v2), (v3, v4), ...(v2i−1, v2i), ...,
(v2n−1, v2n). These edges are all in the Hamiltonian path, and every node in the path is
present in exactly one of these edges. As the path contains every vertex in the graph,
each node of the graph is the endpoint of exactly one of the edges. Thus, this is a
perfect matching in the graph, as desired.

6. Let G = (V,E) be a graph and w : E → R+ be an assignment of nonnegative weights
to its edges. For u, v ∈ V let f(u, v) denote the weight of a minimum u− v cut in G.

(a) Let u, v, w ∈ V , and suppose f(u, v) ≤ f(u,w) ≤ f(v, w). Show that f(u, v) =
f(u,w), i.e., the two smaller numbers are equal.

Solution: Let c = min(f(u,w), f(w, v)). Consider the two ends of the smallest
path between u and v. We can route c units of flow from u to w and then from
w to v. This means f(u, v) ≥ c = min(f(u,w), f(w, v)) = f(u,w), which is only
possible if f(u, v) = f(u,w).

(b) Show that among the
(
n
2

)
values f(u, v), for all pairs u, v ∈ V , there are at most

n− 1 distinct values.

Solution: We prove this by induction on the number of nodes. The result is
clearly true for a graph with 3 nodes from part a. Assume the result for all
graphs G′ of size n, and consider a graph G with n + 1 nodes. There will be a
largest edge, pick one of its two vertices, call it v. Order the edges incident upon
v in decreasing order: f1, f2, . . . , fn. So f1 is the largest edge in G. Note that the
fi are sides of triangles of all whom have one edge in the smaller graph G′, where
there are only n− 2 distinct edges by induction hypothesis. We argue that other
than f1, all the other fi are equal to some edge in G′, thus the number of distinct
edges in G can only one larger, with the contribution coming from f1. This is true
because of the decreasing ordering on the f ′is and the triangle property from part
a, enforcing each f2, . . . , fn be equal to some edge in G′. Thus the addition of v
can only add one new distinct edge weight: f1, making for at most n− 1 distinct
weights.

7. Let T be a spanning tree of a graph G with an edge cost function c. We say that T has
the cycle property if for any edge e′ /∈ T , c(e′) ≥ c(e) for all e in the cycle generated
by adding e′ to T . Also, T has the cut property if for any edge e ∈ T , c(e) ≤ c(e′) for
all e′ in the cut defined by e. Show that the following three statements are equivalent:

(a) T has the cycle property.

(b) T has the cut property.

(c) T is a minimum cost spanning tree.

Remark 1: Note that removing e ∈ T creates two trees with vertex sets V1 and V2.
A cut defined by e ∈ T is the set of edges of G with one endpoint in V1 and the other
in V2 (with the exception of e itself).

4

Solution: In order to show that (a), (b), and (c) are equivalent, it is enough to show:
(a) ⇔ (c), and (b) ⇔ (a).

(c) ⇒ (a): By contradiction suppose T does not have the cycle property: there exists
e′ 6∈ T such that T ∪ {e′} has a cycle C in which there exists e ∈ T and e ∈ C where
c(e) > c(e′). Let tree T ′ be the tree obtained by adding e′ to T and removing e; T ′ is a
tree with cost strictly less than cost of T which is contradicting with T being an MST.

(a) ⇒ (c): By contradiction suppose T is not an MST: let e′ be the first edge that
was picked by Kruskal’s algorithm but does not belong to T . Adding e′ to T would
create cycle C. Since T has cycle property, c(e) ≤ c(e′), e ∈ C. Therefore, all e ∈ C,
e 6= e′ have been visited by the Kruskal’s algorithm. We have two cases:

case 1: All e ∈ C\{e′} were picked by the algorithm. In this case the algorithm would
not pick e′ because it creates a cycle with the existing edges.

case 2: There exists e∗ ∈ C, e∗ 6= e′ such that it was not picked by the algorithm. The
reason for not picking an edge is that it would create a cycle with the existing edges.
However, since e′ was the first edge picked by the algorithm that does to belong to T ,
this would mean that T has a cycle, which is a contradiction.

(a) ⇒ (b): By contradiction suppose T does not have the cut property: there exists
e ∈ T such that there exits edge e′ = (v1, v2) such that v1 ∈ V1 and v2 ∈ V2 (V1 and V2
are the set of vertices of the two connected components after removing e, see Remark
1.), and c(e′) < c(e). Since T is connected graph there exist path PT between v1 and
v2 such that all the edges of PT belong to T . Adding e′ to PT creates a cycle in which
there exist e ∈ T where c(e) > c(e′) which is contradicting with T having the cycle
property.

(b)⇒ (a): By contradiction suppose T does not have the cycle property: there exists
edge e′ such that when adding it to T and creating cycle C, there exists e ∈ C, where
c(e) > c(e′). In T , if we remove e, we have two connected components with vertex sets
V1 and V2. Let v1, v2 be the endpoints of e, where v1 ∈ V1 and v2 ∈ V2. Since e ∈ C
there exists another path between v1 and v2 therefore at least one edge from C belongs
to cut (V1, V2); since all the edges of C belong to T except e′and T ∩ cut(V1, V2) = ∅, e′
should belong to cut(V1, V2). However, c(e′) < c(e), which contradicts with T having
the cut property.

8. Given a graph G = (V,E), a set of vertices D ⊆ V is called a dominating set if every
vertex in V \D is adjacent to a vertex in D. Suppose |V | = n and the minimum degree
of G = δ > 0. Show that G contains a dominating set of size at most:

n log(1 + δ)

1 + δ

Solution: Consider a randomly sampled subset of vertices, X ⊆ V ; each vertex v ∈ V
is in X independently with probability p. We will choose the value of p later. Let
Y ⊆ V be the set of vertices in V \X that also have no neighbors in X. So X ∪ Y is a
dominating set of G. We will show by the probabilistic method that there is some X
such that |X ∪ Y | ≤ n(log(1+δ)+1)

1+δ
.

5

First we compute the expected size of X∪Y . Notice that because X and Y are disjoint,
|X ∪ Y | = |X| + |Y |. Let Xv be the indicator variable that v ∈ X. So we have, by
linearity of expectation:

E[|X|] =
∑
v∈V

E[Xv] = np

Similarly, let Yv be the indicator variable that v ∈ Y . A vertex is in Y if and only if it
and all of its neighbors are not in X, which occurs independently with probability p.
Then E[Yv] = Pr[Yv = 1] = (1 − p)dv+1, where dv is the degree of v, and we have the
following:

E[|Y |] =
∑
v∈V

E[Yv] =
∑
v∈V

(1− p)dv+1

≤
∑
v∈V

(1− p)δ+1 = n(1− p)δ+1

We have used the fact that dv ≥ δ for all v ∈ V above. Thus combining the above
with the fact that (1− x) ≤ e−x, we have:

E[|X ∪ Y |] = E[|X|] + E[|Y |] ≤ np+ n(1− p)δ+1

≤ np+ ne−p(δ+1)

For any value of p, the above provides an upper bound on the expected size of our
random dominating set. So, for any choice of p, we know that there exists some
dominating set with size at most np+ ne−p(1+δ). Now, we want to choose p such that
this bound is minimized. This minimization occurs at p = log(1+δ)

1+δ
(easy to check it is

minimum by taking derivatives). Plugging this value of p into our bound we get:

E[|X ∪ Y |] ≤ n log(1 + δ)

1 + δ
+

n

1 + δ

=
n(log(1 + δ) + 1)

1 + δ

Thus, at this value of p, there must exist some X, such that the size of the dominating
set |X ∪ Y | ≤ n(log(1+δ)+1)

1+δ
.

9. Consider the following scenario. Due to large-scale flooding in a region, paramedics
have identified a set of n injured people distributed across the region who need to be
rushed to hospitals. There are k hospitals in the region, and each of the n people
needs to be brought to a hospital that is within a half-hour’s driving time of their
current location (so different people will have different options for hospitals, depending
on where they are right now).

At the same time, one doesn’t want to overload any one of the hospitals by sending too
many patients its way. The paramedics are in touch by cell phone, and they want to
collectively work out whether they can choose a hospital for each of the injured people

6

in such a way that the load on the hospitals is balanced : Each hospital receives at most
dn/ke people.

Create a polynomial time algorithm that outputs an assignment of people to hospitals
if a valid assignment exists and outputs no otherwise.

Solution: We model the problem as a max-flow problem. Let N be the set of people
and K be the set of hospitals. We define the network as follows:
Nodes: K ∪N ∪ s, t where s is the source and t is the sink.
Edges:

• There is an edge with capacity one from s to every node in N .

• There is an edge with capacity dn
k
e from every node in K to t.

• There is an edge with capacity one from a node in n ∈ N to a node k ∈ K if n is
within a half-hour distance from k.

If the max-flow in this graph has value n then every person can be assigned to a hospital.
This can be done in polynomial time by Ford-Fulkerson; because the capacities are
integral, there exists an integral max flow, so the assignment of people to hospitals
simply follows this flow. If the max flow of this network is less than n, then no valid
assignment exists.

7

