
CME 305: Discrete Mathematics and Algorithms

1 Basic Definitions and Concepts in Graph Theory

A graph G(V,E) is a set V of vertices and a set E of edges. In an undirected graph, an edge is an

unordered pair of vertices. An ordered pair of vertices is called a directed edge. If we allow multi-sets

of edges, i.e. multiple edges between two vertices, we obtain a multigraph. A self-loop or loop is an edge

between a vertex and itself. An undirected graph without loops or multiple edges is known as a simple

graph. In this class we will assume graphs to be simple unless otherwise stated.

If vertices a and b are endpoints of an edge, we say that they are adjacent and write a ∼ b. If vertex a is

one of edge e’s endpoints, a is incident to e and we write a ∈ e. The degree of a vertex is the number of

edges incident to it.

A walk is a sequence of vertices v1, v2, . . . , vk such that ∀i ∈ 1, 2, . . . , k − 1, vi ∼ vi+1. A path is a walk

where vi 6= vj , ∀i 6= j. In other words, a path is a walk that visits each vertex at most once. A closed walk

is a walk where v1 = vk. A cycle is a closed path, i.e. a path combined with the edge (vk, v1). A graph is

connected if there exists a path between each pair of vertices. A tree is a connected graph with no cycles.

A forest is a graph where each connected component is a tree. A node in a forest with degree 1 is called a

leaf.

The size of a graph is the number of vertices of that graph. We usually denote the number of vertices with

n and the number edges with m.

Claim 1 Every finite tree of size at least two has at least two leaves. Furthermore, the number of edges in

a tree of size n is n− 1.

Proof: The first property can be seen by starting a path at an arbitrary node, walking to any neighbor that

has not been visited before. Note that since the number of vertices is at least two, we can not have vertices

of degree zero. After at most n steps, we must reach a vertex v with no unvisited neighbors. The degree of

v can not be larger than one. Otherwise, the graph has a cycle and therefore it is not a tree. We can then

traverse a path starting at v, and the vertex where the path stops must be a second leaf.

We can show the second property by induction. The base case n = 1 is trivial. Any tree of size n > 1 has at

least one leaf. Removing a leaf results in a tree with one less node and one less edge. Therefore, a tree with

n vertices has one more edge than a tree with n− 1 vertices.

Proposition 1 If a graph G(V,E) has any two of the following three properties, it has all three.

1. G is connected.

2. G has no cycles.

3. |E| = |V | − 1.

Therefore, any graph with any two of these properties is a tree.

Proof:

(1), (2)⇒ (3): Already proved in Claim 1.

(1), (3)⇒ (2): We prove this by contradiction; assume (1) and (3) hold, but (2) does not hold, i.e., graph G

has a cycle. Consider cycle c in G: we remove one of the edges from cycle c. The graph remains connected.
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We repeat this procedure until there is no cycle left. The resulting graph G′(V,E′) is still connected.

Moreover, since we removed at least one edge, E′ ⊂ E and |E′| < |E|. On the other hand, G′ is a connected

graph with no cycle, hence by the first part of the proof, it has |V | − 1 edges, which is a contradiction.

(2), (3)⇒ (1): We prove this by contradiction; assume (2) and (3) hold, but (1) does not hold, i.e., graph G

is not connected. Consider the connected components of G. In other words, partition V into k > 1 subsets

V1, ..., Vk such that (i) there is no edge between Vi and Vj for i 6= j and (ii) the graph induced by Vi, that is

G(Vi, Ei) where Ei = {{u, v} : {u, v} ∈ E, u, v ∈ Vi} is connected. Each Gi is connected and has no cycles,

therefore by the first part of the proof, |Ei| = |Vi| − 1. Since there is no edge between Vi and Vj , i 6= j,

|E| =
∑k

i=1 |Ei| = |V | − k < |V | − 1 = |E|, which is a contradiction.

2 Eulerian Circuits

Definition: A closed walk (circuit) on graph G(V,E) is an Eulerian circuit if it traverses each edge in E

exactly once. We call a graph Eulerian if it has an Eulerian circuit.

The problem of finding Eulerian circuits is perhaps the oldest problem in graph theory. It was originated by

Euler in the 18th century; the problem was whether one could take a walk in Konigsberg and cross each of

the four bridges exactly once. Motivated by this, Euler was able to prove the following theorem:

Theorem 1 (Euler, 1736)

Graph G(V,E) is Eulerian iff G is connected (except for possible isolated vertices) and the degree of every

vertex in G is even.

Proof:

“⇒”: assume G has an Eulerian circuit. Clearly, G must be connected, otherwise we will be unable to

traverse all the edges in a closed walk. Suppose that an Eulerian circuit starts at v1; note that every time

the walk enters vertex v 6= v1, it must leave it by traversing a new edge. Hence, every time that the walk

visits v it traverses two edges of v. Thus dv is even. The same is true for v1 except for the first step of the

walk that leaves v1 and the last step that it enters v1. Again, we can pair the first and last edges in the

circuit to conclude that dv1 is also even.

“⇐”: we prove this by strong induction on the number of nodes. For n = 1, the statement is trivial. Assume

G has k + 1 vertices, it is connected, and all the nodes have even degrees. Pick any vertex v ∈ V and start

walking through the edges of the graph, traversing each edge at most once. Given that all the degrees of

the nodes in G are even, we can only get stuck at v. Remove the circuit of visited edges, c1, from G; Call

this new graph G′. Node v is an isolated vertex in G′ therefore any connected component of G′ has at

most k vertices. Moreover, it is easy to see that the degree of nodes in G′ are even (we removed an even

number of edges from each vertex). Thus by the induction assumption, all the connected components of G′

are Eulerain. Now, we have a collection of circuits c1, . . . , cl. We can merge them into one large circuit in

the following way:

Traverse c1 until it enters a vertex v that is part of a not-yet traversed circuit cj . Then start traversing cj ,

following the same rule. We resume traversing c1 once all the edges in cj has been visited. Note that since

G was connected, we will be able to reach all circuits in this fashion.

Euler’s theorem gives necessary and sufficient condition for whether a graph is Eulerian which can be easily

checked in linear time. Note that this is a “constructive” proof: we explicitly defined an algorithm to find

an Eulerian circuit in the proof. In addition, the algorithm is close to optimal, given that its running time

is at most 2|E| and |E| is an obvious lower bound on the number of operations any algorithm can achieve.
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We can extend the result to find a necessary and sufficient condition for Eulerian paths, which is a walk (not

necessarily closed) that visits each edge exactly once:

Claim 2 G has an Eulerian path iff it is connected and only two of its vertices have odd degrees.

We can also define Eulerian circuits of a directed graph.

Claim 3 Let G(V,E) be a directed graph. G has an Eulerian circuit iff

• G is connected

• ∀v ∈ V , indegree(v) = outdegree(v)

A seemingly similar structure was defined by Sir William Rowan Hamilton in the 19th century, but concerns

visiting every vertex exactly once rather than every edge.

Definition: A cycle C in G is Hamiltonian if it visits every vertex in V exactly once.

This was originally invented and marketed by Hamilton as a board game, where the object was to find a

Hamiltonian cycle around the edges of a dodecahedron. The puzzle failed financially, but the concept lives

on.

A famous example of a Hamiltonian cycle problem is the Knight’s tour, which asks whether one can move

a knight in a chessboard while visiting each vertex exactly once and returning to the starting vertex. The

graph representation consists of 64 vertices corresponding to the squares of the board, with an edge between

vertices if there is a legal knight move between the two squares. Is there a Hamiltonian path (cycle) in the

chess board graph? The answer is yes. Gauss enumerated the number of different Hamiltonian cycles in

such a graph.

As opposed to the Eulerian circuits, Hamiltonian paths are remarkably difficult to find. We will show later

in the class that there exists no polynomial running time algorithm to find a Hamiltonian cycle in a general

graph unless P = NP . For this particular problem, the best known running time is super-polynomial (it is

not bounded above by any polynomial).

3 Application: DNA Sequencing

Recall that DNA consists of two complementary strands of nucleotides. There are 4 different nucleotides,

namely A, G, C and T (for those wondering, U only appears in RNA, replacing T ). Our goal is to be able

to read a DNA sequence. What’s the best way to do it? One possible way (one that we will not study), due

to Frederick Sanger, is called the Dideoxy termination method, or chain termination method. For this he

was awarded the 1980 Nobel price in Chemistry.

A simpler technique, invented by Professor Patrick Brown from Stanford University, is based on DNA arrays.

Basically the original DNA sequence is cut into pieces of a given length, tagged with a fluorescent agent,

and exposed to an array of known sequences of the same length, so that the DNA pieces will hybridize

with complementary sequences in the array. We can detect the presence of particular sequences based on

the strength of florescence in each square of the array. Here we treat the presence or absence as a binary

variable, but in reality the florescence will be graded.

Given a DNA sequence, s, of length n, DNA arrays detects all the length l subsequence of s, {σ1, σ2, . . . , σn−l+1},
which is called the Spectrum of s, Spectrum(s, l). However, it does not provide any information about the

position of a substring in s.
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Figure 1: (a) Hamiltonian Based Reconstruction Graph (b) Eulerian Based Reconstruction Graph

Question: Given Spectrum(s, l), can we reconstruct s?

Answer: (Hamiltonian Based) An ordered pair of substrings (σi, σj) overlap if the last l − 1 letters of σi
overlap with the first l− 1 letters of σj . Given Spectrum(s,l), we construct a directed graph GH(s, l) in the

following way: we introduce vertex vi for σi, and put a directed edge from vi to vj if (σi, σj) overlap. An exam-

ple is illustrated in Fig.1(a). It is not hard to see that there is a one-to-one mapping from every Hamiltonian

path of GH(s, l) and a sequence with Spectrum(s, l). Note that a graph can have more than one Hamiltonian

paths; or equivalently there may exist s1 6= s2 such that Spectrum(s1, l) = Spectrum(s2, l). For example

spectrum of Fig. 1(a) corresponds to two possible sequences; ATGCGTGGCA and ATGGCGTGCA.

As we noted above finding a Hamiltonian path is an NP -Hard problem. Hence, we need to formulate the

problem in a way that we can solve it more efficiently; we reduce the problem to an Eulerain path problem

by constructing a graph whose edges correspond to σi’s. Thus by traversing all the edges exactly once - or

equivalently finding an Eulerain circuit- we can reconstruct s; We define a directed graph GE(s, l) in the

following way: we introduce a vertex v for each l − 1 substring of s. We connect v to w if there exists σi
such that the fist l− 1 letters of σi coincide with v and its last l− 1 letter coincide with w. As an example,

GE(s, l) of Spectrum {ATG, TGG, TGC,GTG,GGC,GCA,GCG,CGT} is shown in Fig.1(b). It is easy to

see that there is a one-to-one mapping from every Eulerian path of GH and a sequence with Spectrum(s, l).

For example an Eulerain path of GE(s, l) in Fig.1(b) is ATGGCGTGCA.

4 Minimum Spanning Trees

We are given a connected graph G(V,E), each edge e has a cost (wight) of c(e) > 0. Let the cost of G to be∑
e∈E c(e).

Question: What is cheapest connected subgraph of G?

Clearly, the solution G′ is a tree. Otherwise, suppose G′ has at least one cycle. Pick an edge from that cycle

and delete it. The resulting graph is still connected and has a lower cost, thus G′ could not be the cheapest

connected subgraph.

Definition: For a connected graph G(V,E), a spanning tree of G, T (G) is a subgraph of G that is a tree and

has vertex set V . Given the cost function c(·), the minimum spanning tree of G, MST (G), is the cheapest

spanning tree of G.

To find the cheapest subgraph of G - or equivalently MST (G) - one way would be to enumerate all the

spanning trees and find the cheapest one. However, the number of spanning trees can be exponentially large.

We need to come up with a more efficient way to find MST (G).

Joseph Kruskal proposed the following greedy algorithm to produce an MST . For simplicity assume that

the c(·) is a one-to-one function.
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The Greedy Algorithm: Greedy-MST

1. Given graph G(V,E), initialize E(T ) = {} and V (T ) = V .

2. Re-index the edges e1, ..., em so that c(ei1) < c(ei2) < ... < c(eim)

3. While |E(T )| < |V | − 1, add the cheapest unused eik that does not create a cycle.

Claim 4 Greedy-MST produces T ∗ = MST (G).

Proof: Let T be the tree that Greedy-MST outputs. Clearly, ei1 ∈ E(T ). We prove that ei1 ∈ E(T ∗);

assume ei1 /∈ E(T ∗), adding ei1 to T ∗ results in creating a cycle in the new graph. Remove any edge from

such cycle (except ei1); we have a new spanning tree whose weight is strictly smaller than that of T ∗, which

is contradicting with the assumption that T ∗ is MST (G).

We prove the rest by induction on the steps of the progress of the algorithm. Let ip(1), ip(2), . . . , ip(k) be the

indices of the first k edges that Greedy-MST picks. Assume they all belong to T ∗. Suppose eip(k+1)
does not

belong to T ∗. Adding eip(k+1)
to T ∗ results in having a graph with a cycle, c. If we can show that c contains

at leat one edge with index l > p(k+ 1) - or equivalently c(eil) > c(eip(k+1)
) - then by removing eil , we have

a new spanning tree whose weight is strictly smaller than the cost of T ∗, which is contradicting with the

assumption that T ∗ is MST (G).

Now we prove that c contains at leat one edge with index l > p(k + 1); suppose c does not have such an

edge, hence all the edges of c have indices smaller than or equal to p(k + 1). Looking back at Greedy-MST

algorithm, c must have an edge with index x < p(k+1) where x 6= p(j), 1 ≤ j ≤ k+1, otherwise eip(k+1)
would

have created a cycle with the edges that have already been picked by the algorithm, however the algorithm

does not select such an edge. For x 6= p(j), 1 ≤ j ≤ k, assume p(j) < x < p(j+1) the algorithm did not pick

ix because adding eix to {eip(1) , eip(2) , . . . , eip(j)} would create a cycle. However, since {eip(1) , eip(2) , . . . , eip(j)}
and eix belong to T ∗, T ∗ contains a cycle which is contradicting with T ∗ being a tree.

5 Application: Clustering in Bio-informatics

Biologists commonly use DNA arrays to analyze gene function. This technique allows the measurement of

“expression level” (amounts of mRNA produced) in genes. The result is a n ×m matrix recording in each

row the expression levels of a gene.

Clustering algorithms allow for genes with similar expression levels to be linked together in hope that genes

placed in common clusters share common functions. To achieve this, an n×n distance matrix d is constructed.

d(i, j) records how close, or similar, genes i and j are based on their expression levels.

Given n nodes (genes), a distance function, and l < n, the clustering problem aims to partition the nodes

into l groups so that the nodes in the same group are “close” and the nodes in different groups are “far

apart”. One way to formulate the problem and address these goals is as follows:

Let V = {v1, v2, dots, vn} be the set of nodes, and d : V 7→ R+ be the corresponding distance function that

satisfies the following conditions:

1. d(vi, vi) = 0.

2. d(vi, vj) = d(vj , vi).
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Let C = {C1, C2, . . . , Cl} be a partition of V where Ci 6= ∅. We define D(Ci, Cj) to be:

D(Ci, Cj) = min
v∈Ci,w∈Cj

d(v, w),

and D∗(C) = mini,jD(Ci, Cj).

The problem of clusterings of maximum spacing is to find the partition that maximizes D∗(C).

An efficient way to solve this problem is to consider the complete graph on V and for e = (i, j), let c(e) =

d(i, j); ignore all the self loops and run Greedy-MST; delete the l− 1 most expensive edges - or equivalently,

the last l − 1 edges added in the run of the algorithm - more formally, let {ip(1), ip(2), . . . , ip(n−1)} be the

indices of edges of the tree selected by Greedy-MST, T . It is easy to see that by deleting one edge of T

we will have two trees. Similarly, by deleting {ip(n−l), . . . , ip(n−1), } we will have l connected components,

C1, C2, . . . , Cl.

Claim 5 C = {C1, C2, . . . , Cl} is the solution of the l-clusterings of maximum spacing problem.

Proof: First note that D∗(C) is c(eip(n−l)
) or the (l− 1)st most expensive edge of T . We prove the claim by

contradiction, assume that C ′ = {C ′1, C ′2, . . . , C ′l} is another partition in which all C ′i’s are non-empty and

D∗(C ′) > D∗(C). Since C 6= C ′, there exists a cluster Cr with nodes vi ∈ Cr and vj ∈ Cr that are in two

different clusters of C ′. Say vi ∈ C ′s and vj ∈ C ′t. Since vi and vj belong to the connected component Cr

there must be a path P between them in T . Moreover, since all the edges in {ip(1), ip(2), . . . , ip(n−l−1)} have

cost smaller than the cost of ip(n−l), the cost of any edge in P is smaller than D∗(C).

Consider path P in C ′, let u be the first node of P that does not belong to C ′s and w be the node comes

just before u in P . Suppose u ∈ C ′q, clearly D∗(C ′) ≤ D(C ′s, C
′
q) ≤ c(w, u) < D∗(C) which is contradicting

with the assumption that C ′ is the l-clusterings of maximum spacing.

We can also use MST to create a hierarchical clustering of a set. In biology, this tool is used to classify

species, i.e. to build the “tree of life” or the phylogenetic tree. Solving this problem exactly is very hard

but several approximations heuristics are used, one of which relies on minimum spanning trees. To build a

“maximum likelihood” phylogenetic tree in this way, one can use the “closeness” of DNA sequences between

different species as weights of a graph and build the MST of this graph. The phylogenetic tree can then be

reconstructed by looking at where the nodes are located in the MST.
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