
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

TA: Andreas Santucci (santucci@stanford.edu)

Midterm Winter 2017

1. (10 points) A complete bipartite graph or biclique is a special kind of bipartite graph
where every vertex of the first set is connected to every vertex of the second set. Prove
an O(n log n) upper bound for the covering time of the biclique which has n nodes in
each side of the bipartition (for a total of 2n nodes).

Solution via Hitting Times: This is similar to covering two cliques of size n sepa-
rately. Suppose our partitions denoted by L,R, and without loss of generality suppose
we start from a vertex in L. Realize that after two steps, we return to one of the nodes
in L uniformly at random. So, after we have visited k nodes in L, the probability of
discovering a new node after two steps is n−k

n
. So the time it takes to reach a new node

described by 2 ·Geom(n−k
n

). So, the expected number of steps to visit all nodes in L is

E
[
2Geom

(
n− 1

n

)
+ . . .+ 2Geom

(
1

n

)]
= 2

(
n

n− 1
+ . . .+ n

)
= 2n

(
1 + . . .+

1

n− 1

)
≤ 2n · c log n.

To get an upper bound for the whole biclique, we simply double the above quantity,
since we may always wait for our random walk to cover L, and then wait for it to cover
R. Hence cover time bounded by O(n log n).

Solution via Effective Resistances: Suppose u ∈ L and v ∈ R. Consider paths
from u v of length at most three:

u ∈ L

s ∈ R t ∈ L

v ∈ R

Notice that there are other paths between u v of length three or more, but by
excluding them we are omitting non-negative terms from the denominator, hence we
realize an upper bound on effective resistance between u and v:

Ru,v ≤
1

1 +
∑n−1

i=1
1
3

=
1

1 + n−1
3

= O

(
1

n

)
.

Now suppose that u, v are in the same partition L or R. Then,

u ∈ L

s ∈ R

v ∈ L

By a similar argument (of ignoring paths longer than two thus omitting non-negative
terms from denominator), we have that

Ru,v ≤
1∑n
i=1

1
2

=
1
n
2

=
2

n
= O

(
1

n

)
Hence the effective resistance between any two nodes is O(1/n), and therefore R(G) =
O(1/n). Whence we use our bound that C(G) ≤ 2e3m lnnR(G) + n to see that

C(G) = O(n log n).

2. (10 points) Given a weighted undirected graph G with distinct weights, for any cycle
C in the graph, if the weight of an edge e of C is larger than the individual weight of
all other edges of C, prove that this edge e cannot belong to any Minimum Spanning
Tree of G.

Solution: Assume there is an MST T which has edge e = (u, v) ∈ C, where weight
of e strictly larger than individual weights of all other edges of C. Consider the cut
defined defined by removing e from spanning tree T . Since e ∈ C, there exists another
edge e′ ∈ C where e′ 6= e which is also in the cut. When we removed e from T , we
created two connected components, one containing vertex u and another vertex v. If
we add back e′, we recover a spanning tree with cost strictly less than cost of T , since
weight(e′) < weight(e) (we started with e the heaviest edge in a cycle). Hence T cannot
be an MST, a contradiction, and we have shown e cannot be in any MST.

3. (10 points) Prove that the Minimum Vertex Cover problem can be solved in polynomial
time, on trees.

A note on picking the smaller partition of a bipartite graph: In class we
discussed that all trees are bipartite. Many students argued that the smaller side of
a bipartite graph forms the minimum vertex cover. It’s certainly a cover, but it’s not
necessarily minimum. Consider the following counter example,

2

The left partition has 5 nodes, the right partition has 4 nodes.1 Notice that the two
black nodes form a vertex cover of size two, strictly smaller than choosing the vertex
cover formed by the smaller partition. The above graph is isomorphic to the following,
we simply “grab” the white nodes and “stretch” our graph apart.

Solution via Dynamic Programming: Examine a leaf on the tree (every tree has
at least two leaves), and specifically its incident edge. This edge can only be covered
by either the leaf node or its parent. Since at least one node must be picked, and since
it’s possible for the parent node to cover more than just one edge, we can’t do worse
by choosing the parent instead of the leaf for inclusion in the vertex cover. So for each
leaf in the tree, take its parent for inclusion in the vertex cover. Then delete from our
tree the edge we have covered, the leaf, and the parent we have included in our cover.
In general, we are left with a forest. Repeating the same argument on each of the trees
remaining, we have our algorithm.

Solution via Ford Fulkerson: We first show that if M a matching and C a vertex
cover, that |M | ≤ |C|. Then, using the fact that trees are bipartite, we use FF to get
a min-cut, which we will then use to generate a vertex cover. We will show this vertex
cover the size of a maximum matching and therefore minimal.

First, given a matching M , we know that each vertex in our graph incident to at most
one edge. If the matching is a maximum matching, each vertex incident to at least one
edge. Hence each edge in M must contain at least one incident node in any cover C.
Hence |M | ≤ |C|.
Now, suppose we have set up our tree into a bipartite graph with partitions L,R.
We attach source node s to each node in L with a directed arc of unit capacity, and
each node in R to sink node t with another directed arc, also of unit capacity. We
then draw directed edges from nodes in L to nodes in R if and only if the nodes are
neighbors in our input tree, each with infinite capacity. Without loss of generality,
suppose |L| ≤ |R|.
We now compute the reach of s in the residual graph after termination of FF to find
the min s-t cut (A,B).2 Notice the edges leaving the min-cut δ+(A) must all be edges
of the form (s, u) where u ∈ L or (w, t) where w ∈ R since no edge from L to R may be

1In general, we may construct a family of graphs which exhibit this behavior: construct a bipartite graph
where exactly one node in each partition is connected to all other nodes in the other partition. Another way
to look at it, is to take two star graphs whose centers are joined by a common edge.

2Note that the ∞ edge-capacities are no problem since the cut A = {s} has size |L| <∞, hence the min
s-t cut must be finite as well.

3

included (infinite cost). So, for our vertex cover C, we just pick all nodes (excluding s
and t) from all edges in δ+(A). We are guaranteed this is a vertex cover for tree T .3

Is this cut minimal? Yes. Since FF outputs a maximum matching of L and R, it has
the size of the max-flow and hence the size of the min-cut, which is the size of C by our
construction. Thus, our vertex cover C has size |C| = |M | for a matching M , hence
it’s minimal. Since FF runs in polynomial time, and computing reach of s is linear
time, we’re done.

4. (15 points) Let G(n, 1/2) be the Erods-Renyi graph on n nodes where each edge is
present with probability 1/2. Prove that G(n, 1/2) has diameter O(1) with probability
approaching 1 as n→∞.

Solution: Select two vertices u, v ∈ V and consider the following.

u

n− 2 nodes

... v

For each intermediate node w, there are four disjoint equally likely events: both of
(u,w) and (w, v) are present, neither present, or exactly one present. Notice that in
any case but the first, no length-2 path exists between u, v. Denote the event that there
is no 2-path between u, v by P̄ 2

u,v. Then, since the n− 2 possible nodes w distinct,

Pr(P̄ 2
u,v) =

(
3

4

)n−2

.

By union bound, we have that the probability there exists a pair of nodes u, v such
that there is no 2-path between them given by

Pr(∪u,v∈V P̄ 2
u,v) ≤

∑
u,v∈V

Pr(P̄ 2
u,v) =

(
n

2

)(
3

4

)n−2

.

As n→∞, the geometric term shrinks faster than does the second degree polynomial
grow, whence Pr(∪u,v∈V P̄ 2

u,v) → 0. This means the probability that there exists some
2-path goes to 1, by complementarity. Finally, note that if each pair of vertices has a
2-path, then the diameter of our graph is O(1).

3Suppose not, then there exists an edge (u,w) such that both u 6∈ C (our cover) and w 6∈ C. Then (s, u)
and (w, t) do not cross the cut. But neither does (u,w) (with infinite capacity). Hence s u w t is
an s-t path which never crosses the s-t cut; a contradiction.

4

