
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#3 – Due at the beginning of class Thursday 02/26/15

1. Consider a model of a nonbipartite undirected graph in which two particles (starting
at arbitrary positions) follow a random walk i.e. with each time step both particles
uniform randomly move to one of the neighbors. Prove that the expected time until
they collide is O(n6). A collision is when both particles are on the same node at the
same time step.

Solution: Let G(V,E) denote the graph in question; we construct a new graph
H(W,F) in which an ordinary single particle random walk corresponds to the two
particle random walk on G. Take W = V × V = {(v1, v2)|v1, v2 ∈ V } and F =
{((v1, v2), (w1, w2))|(v1, w1), (v2, w2) ∈ E}. The idea here is that a uniform random
walk on H encodes the state of a two particle random walk on G (in the same way
that a random walk on the path graph encodes the state of a drunk). Given a starting
configuration v = (v1, v2) ∈ W the expected time until the particles collide is bounded
by the hitting time to the vertex u = (v1, v1) ∈ W . This hitting time is bounded by
the cover time of H, i.e.

hvu ≤ C(H) = O(|W |3) = O(n6).

2. Let A be a n×n matrix, B a n×n matrix and C a n×n matrix. We want to design an
algorithm that checks whether AB = C without calculating the product AB. Provide
a randomized algorithm that accomplishes this in O(n2) time with high probability.

Solution: Pick x ∈ {0, 1}n such that xi = 1 with probability 1
2
.

1. compute y = Bx, z = Ay, w = Cx

2. if z != w return false

3. return true

First note that it takes O(n2) time to compute all the above matrix vector multi-
plications. Also note that we avoid roundoff error. Computing w and y involves no
multiplication and there is no error in the computation of z assuming that AB can be
computed exactly.

Now, if AB − C = 0 the algorithm is always correct. So, assume AB − C 6= 0. We
compute the probability that the algorithm returns true,

P (z = w) = P (ABx = Cx) = P ((AB − C)x = 0).

Let D = AB − C and let di be the ith row of D. We have that that

P (Dx = 0) ≤ P (dTi x = 0)

= P (
∑
j

dijxj = 0)

≤ P (
∑
j

dijxj = 0|x2, . . . , xn)

=
1

2

where the last step comes from the fact that we are only free to pick x1 which has
probability of 1

2
regardless which value we pick. Thus the probability we make a

mistake is P (z = w) ≤ 1
2
. Repeating the algorithm some constant k times (say 10) we

bound the probability of error by 1
2k
≈ 0.001.

3. Given a connected, undirected graph G = (V,E) and a set of terminals S ⊆ V ,
S = {s1, s2, . . . , sk}, a multiway cut is a set of edges whose removal disconnects the
terminals from each other. The multiway cut problem asks for the minimum weight
such set. The problem of finding a minimum weight multiway cut is NP-hard for any
fixed k ≥ 3. Observe that the case k = 2 is precisely the minimum s− t cut problem.

Define an isolating cut for si to be a set of edges whose removal disconnects si from
the rest of the terminals. Consider the following algorithm

• For each i = 1, . . . , k, compute a minimum weight isolating cut for si, say Ci.

• Discard the heaviest of these cuts, and output the union of the rest, say C.

Each computation in Step 1 can be accomplished by identifying the terminals in
S − {si} into a single node, and finding a minimum cut separating this node from si;
this takes one max-flow computation. Clearly, removing C from the graph disconnects
every pair of terminals, and so is a multiway cut.

(a) Prove that this algorithm achieves a 2− 2/k approximation.

Solution: This questions is from Vijay Vazirani’s approximation algorithms
book. Let A be an optimal multiway cut in G. We can view A as the union
of k cuts as follows: The removal of A from G will create k connected compo-
nents, each having one terminal (since A is a minimum weight multiway cut, no
more than k components will be created). Let Ai be the cut separating the com-
ponent containing sifrom the rest of the graph. Then A = ∪ki=1Ai. Since each
edge of A is incident at two of these components, each edge will be in two of the
cuts Ai. Hence,

k∑
i=1

w(Ai) = 2w(A)

Clearly, Ai is an isolating cut for si. Since Ci is a minimum weight isolating cut
for si, w(Ci) ≤ w(Ai). Notice that this already gives a factor 2 algorithm, by

2

taking the union of all k cuts Ci. Finally, since C is obtained by discarding the
heaviest of the cuts Ci,

w(C) ≤ (1− 1/k)
k∑

i=1

w(Ci) ≤ (1− 1/k)
k∑

i=1

w(Ai) = 2(1− 1/k)w(A)

(b) Prove that this analysis is tight by providing an example graph where the approx-
imation bound is exactly achieved.

Solution: Consider for k = 4

For each terminal si, the minimum weight isolating cuts for si is given by the edge
incident to si. So, the cut C returned by the algorithm has weight (k− 1)(2− ε).
On the other hand, the optimal multiway cut is given by the cycle edges, and has
weight k.

4. Consider variants on the metric TSP problem in which the object is to find a simple
path containing all the vertices of the graph. Three different problems arise, depending
on the number (0, 1, or 2) of endpoints of the path that are specified. If zero or one
endpoints are specified, obtain a 3/2 factor algorithm.

Hint. Consider modifying Christofides algorithm for metric TSP.

Solution: We prove the 1 endpoint case, and the zero endpoints will follow by arbi-
trarily selecting an endpoint. Call the single endpoint v.

Construct a minimum spanning tree T of G. Determine the set of odd degree vertices,
call it S. There will be an even number of them, i.e. |S| = even. v may or may not be
in S. If v is in S, take it out, along with another arbitrary vertex from S. If v is not
in S, don’t do anything.

Find the minimum matching M on S, and add it to T , call the result G′. Notice that
in G′, all nodes have even degree, except for v and some other node. Thus we can find
an eulerian path and shortcut it to obtain a hamiltonian path. It remains to bound
the weight of G′.

Notice that M is a matching on at most n − 1 ≥ |S| nodes, with this bound being
tight only when n is odd and v 6∈ S, otherwise the bound is strict. Also notice that the
optimal hamiltonian path P ∗ contains two edge-disjoint matchings on n− 1 and n− 2

3

nodes (just alternate edges along the path). Thus the weight of a minimum matching
on S is at most half the weight of P ∗, the optimal path.

Since P ∗ is a spanning tree, we also have the weight of T is less than P ∗. Thus the
union of the path and matching have at most 3/2 the weight of P ∗.

5. Recall the minimum vertex cover problem: given a graph G(V,E) find a subset S∗ ⊆ V
with minimum cardinality such that every edge in E has at least one endpoint in S∗.
Consider the following greedy algorithm. Find the highest degree vertex, add it to the
vertex cover S and remove it along with all incident edges. Repeat iteratively. Prove
that this algorithm has an unbounded approximation factor i.e. for any c there exists
an input graph G such that |S| ≥ c OPT.

Solution: Consider a bipartite graph with partition (A,B). Let |A| = n and partition
B into n disjoint sets {Bi}n1 with |Bi| = bn/ic. Then |B| = n+bn/2c+bn/3c+· · ·+1 =
O(n log n). For each vertex a ∈ A place an edge to a vertex b ∈ Bk such that each
vertex in Bk has degree at least k. Repeat this for k = 1, 2, . . . , n and note that this
construction is possible since each |Bk| ≤ n/k.

Clearly, OPT for this graph is just |A| = n. But the algorithm will (depending on how
degree ties are broken) remove all vertices in B. The approximation ratio is ALG/OPT
= O(n log(n))/n = O(log(n)) Since the ratio depends on n it is unbounded.

6. A dominating set of a graph is a subset of vertices such that every node in the graph is
either in the set or adjacent to a member of the set. The DOMINATING-SET problem
is as follows: given a graph G and a number k, determine if G contains a dominating
set of size k or less.

(a) Show the DOMINATING-SET problem is NP-complete.

Solution: We will show that this problem is NP-Complete by reduction to VER-
TEX COVER. Assume we have a black box for solving dominating set instances
in polynomial time, and let G be a graph and k a number. We will show that we
can tell if G contains a vertex cover of k or fewer nodes in polynomial time.

A problem is NP-complete if it is both NP and NP-hard. The DOMINATING
SET problem is clearly in NP, as given a set S, a graph G, and a number k we can
test if S is a dominating set of G of size k or less by first checking if its cardinality
is less than or equal to k and then checking if every node in G is either in S or
adjacent to a node in S. This process clearly takes polynomial time. We now
show the problem is NP-hard.

First, note that we can limit ourselves to the case where G is connected, as if G
disconnected, we can break G into its connected components G1...Gr and compute
for each of these connected subgraphs the minimum ki such that there exists a
vertex cover in the subgraph. We can compute ki by simply performing a binary
search for it. Adding the obtained covers together gives the minimum vertex cover
of G. This is obviously a vertex cover, and it is minimum since any smaller vertex

4

cover must include fewer vertices from some connected subgraph of G Gi. This
contradicts the minimality of the cover of Gi we added to the cover of G. Thus
we can safely assume that G is connected in our reduction.

Create a new graph G′ from G as follows: for every node u in G, create a corre-
sponding node u in G′. Further, for every edge (u, v) in G, create a corresponding
node wuv in G′, and add the edges (u,wuv), (v, wuv), and (u, v). This graph has
m+n nodes, where n is the number of nodes in G and m is the number of edges.
We will show that for any number p, G has a vertex cover of p nodes if and only
if G′ has a dominating set of p nodes.

We begin with the forward direction. Let G have a vertex cover of p nodes, and
call it S. Then for every edge (u, v) in G, S contains either u or v, by definition.
Now, when we built G′, we took every node of G and created a copy of it in G′.
Let S ′ ⊆ G′ be the set of all the nodes which correspond to the nodes of S in G.
This is a set of size p, and is a dominating set in G′: for every node corresponding
to a node u S ′ contains either u or some neighbor of u (this neighbor exists since
G is connected by assumption), and for any node corresponding to an edge wuv

S ′ contains either u or v by the construction of S– by the definition of G′ one
of these nodes neighbors wuv. Thus, if G has a vertex cover of size p G′ has a
dominating set of size p.

We now prove the backwards direction. Let G′ have a dominating set S ′ of p
nodes. We construct a cover of G as follows: for every node of the form wuv in S ′

(that is, for every node corresponding to an edge of G), add the node u or v to
a set S. For every node z corresponding to a node of G, add it to S. This gives
a set of size p in G, which is a vertex cover in G: for every edge (u, v) in G, wuv

was created in G′. This node can only be dominated by u or v, and so S ′ clearly
must contain either u, v, or wuv. Since we formed S by taking all of the nodes
of S ′ and converting the nodes of the form wuv to nodes of the form u, for every
edge in G, S contains either u or v, and thus S is a vertex cover of size p of G.
So if G′ has a dominating set of size p, G has a vertex cover of size p.

With this, we see that G contains a vertex cover of k nodes if and only if G′

contains a dominating set of k nodes. Thus, to tell if G has a vertex cover of k
nodes or less, we form G′ and apply our black box to it to see if it has a dominating
set of k or fewer nodes. Since G′ has m+n = O(n2) nodes and our black box runs
in polynomial time, doing this on G′ takes polynomial time. By our above proof,
this algorithm is guaranteed to return YES if and only if G actually contains a
vertex cover of k or fewer nodes. Thus, our reduction is complete: a polynomial
time algorithm for DOMINATING SET implies a polynomial time algorithm for
vertex cover, and thus DOMINATING SET is NP-complete.

(b) Obtain a ln(n)-approximation to the DOMINATING-SET problem.

Solution: We will show that a simple greedy approach for this problem achieves
the desired approximation ratio. Our algorithm is as follows: while there are still

5

nodes in the graph, choose the node of highest degree, add it to our approximate
dominating set S, and remove it and all of its neighbors from G. This clearly
runs in polynomial time (we do at most n iterations of our loop, which checks
the degree once and deletes at most n nodes), and returns a valid dominating set:
a node is only deleted when it or a neighbor of it was added to S, and so since
every node is eventually deleted, every node is either in S or adjacent to a node
in S. We will show that this gives a ln(n)-approximation for our problem.

Assume that G has n nodes and the minimum dominating set of G has size k.
Call this sets S. Clearly, S must contain a vertex of degree at least n/k− 1, as if
it didn’t S could only dominate strictly fewer than k(n/k − 1 + 1) = n nodes: it
dominates k nodes by containing them and strictly less than k(n/k − 1) = n− k
of them by neighboring them. Thus, when we add the vertex of highest degree
to S, we added a node with degree at least n/k − 1, and when we delete it an its
neighbors from G, we delete at least n/k nodes. So after adding this one node of
G to our set we get a new graph of n−n/k = n(1−1/k) nodes to cover. Repeating
this same argument on this new graph (utilizing the fact that at most k nodes
from S cover it and so one of the nodes has degree at least a 1/k-fraction of the
number of remaining nodes minus 1) and recursing gives us that after adding r
nodes to S, we will be left with a graph with at most n(1 − 1/k)r nodes. If we
chooose r = kln(n), we have a graph with n(1− 1/k)kln(n) < ne−ln(n) = n/n = 1
nodes, and as the number of nodes must be an integer, we conclude that the
graph at this point is empty. So, as our algorithm terminates after adding at
most kln(n) = ln(n)OPT nodes to S, we have that this algorithm is a ln(n)
approximation to the DOMINATING SET problem, as desired.

7. An oriented incidence matrix B of a directed graph G(V,E) is a matrix with n = |V |
rows and m = |E| columns with entry Bve equal to 1 if edge e enters vertex v and −1
if it leaves vertex v. Let M = BBT .

(a) Prove that rank(M) = n−w where w is the number of connected components of
G.

(b) Show that for any i ∈ {1, . . . , n},

detMii =
∑
N

(detN)2,

where Mii = M\{ith row and column}, and N runs over all (n − 1) × (n − 1)
submatrices of B\{ith row}. Note that each submatrix N corresponds to a choice
of n− 1 edges of G.

(c) Show that

detN =

{
±1 if edges form a tree

0 otherwise

This implies that t(G) = detMii, where t(G) is the number of spanning trees of
G. In this definition of a tree, we treat a directed edge as an undirected one.

6

(d) Show that for the complete graph on n vertices Kn,

detMii = nn−2.

Solution:

(a) Consider that for a graph with k connected components, we can transform L into
a block diagonal matrix by relabeling the vertices of the graph such that each
block corresponds to a single connected component. It is therefore sufficient to
focus our analysis on a single connected component.

Next we claim Kernel(L) = Kernel(BTB) = Kernel(1). Suppose Bx = 0 then we
have BTBx = 0 and Lx = 0. Hence x in the kernel of B implies x is also in the
kernel of L.

Suppose Lx = 0 then we have xTLx = 0 so xTBTBx = ‖Bx‖22 = 0 which only
holds if Bx = 0. Hence x in the kernel of L implies x is also in the kernel of B.

Lastly we have:

‖Bx‖22 = 0 ⇔
∑

(i,j)∈E

(xi − xj)2 = 0

⇔ ∀(i, j) ∈ E : xi = xj

⇔ x ∈ Kernel(1)

(b) Given an r × q matrix C and an q × r matrix D, the Cauchy-Binet formula
states that det(CD) =

∑
S det(CS)det(DS) where the sum is over all possible

size r subsets S of {1, 2, . . . , q}. Note that Mii = BiB
T
i and apply the Cauchy-

Binet formula with r = n − 1, q = m,C = Bi and D = BT
i . The identity

det(A) = det(AT) then yields the final result. A proof of the Cauchy-Binet
formula can be found at the following link. http://www.lacim.uqam.ca/~lauve/
courses/su2005-550/BS3.pdf

(c) Given N consider the subgraph of G induced by the choice of edges specified by
N . Assume that this subgraph contains a cycle. Furthermore, for now, assume
this cycle is directed. Index the vertices of the cycle with set I = {i1, i2, . . . , ik}.
Define a n n − 1 vector c with ones at indices of I and zeros elsewhere. Notice
that u = Nc = 0. This is true since any jth entry of u is the sum of +1 and −1
indicating a cycle edge entering vertex j and leaving it respectively. This implies
that the columns of N are linearly dependent and thus det(N) = 0.

For a cycle that is not directed note that we can set the entries in the vector c
from {−1, 1} and reverse the sign of any column and in doing so flip the direction
of any edge in the cycle. Also, note that the removed row does not ruin the result
since the corresponding entry is never in u = Nc.

Now assume we have a tree. First use the following procedure to create a sequence
{i1, i2, . . . , in−1}. Pick any leaf i1 and remove it along with an incident edge ei1 .
Then a leaf i2 with incident edge ei2 , etc... . At each step we still have a tree but

7

with one less vertex. Continue the procedure until all edges of the tree have been
enumerated. Now construct a permutation matrix P to to rearrange the rows and
columns of N in the same order as they were removed i.e. send vertex ik to row
k and edge eik to column k. Note that PNP is lower triangular since ik 6∈ eir for
k < r (otherwise ik would not be a leaf at kth step). Furthermore all entries on
diagonal are ±1 and so det(N) = det(PNP) = ±1.

Lastly, recall that a tree always has at least two leaves and so we can avoid picking
the vertex corresponding to the removed row during this procedure.

(d) Since det(Mii) is the number of spanning trees the total number of trees on n
vertices will be given by the complete graph Kn since any possible set of edges
may be selected.

Consider the diagonal entry of Mii. A diagonal entry is the degree of vertex j
which is n − 1 for a complete graph. An off-diagonal entry is a dot product
between rows corresponding to distinct vertices. Since we have a complete graph,
we have an edge between them and so the dot product is −1 · 1 = −1.

We can then write Mii in form nI − eeT where e is a vector of all ones. The
determinant can be computed using the ShermanMorrison formula as follows.

det(Mii = (1− eT Ie

n
det(nI) = (1− n− 1

n
nn−1 = nn−2

8. Given a sequence pi of stock prices on n days, we need to find the best pair of days to
buy and sell. i.e. find i and j that maximizes pj − pi subject to j ≥ i. Give an O(n)
dynamic programming solution.

Solution: Enumerate the days as 1, . . . , n and let f(j) denote the most profit that
may be achieved by selling on day j, that is

f(j) = max
i:i≤j

(pj − pi).

We have the base case f(1) = 0, and we have the recurrence

f(j) = max
{
pj − pi, max

i≤j−1
(pj − pi)

}
= max

{
0, pj − pj−1 + max

i≤j−1
(pj−1 − pi)

}
= max{0, pj − pj−1 + f(j − 1)}.

Therefore f(j) may be computed for all j = 1, . . . , n in O(n) time, along with the final
result maxj f(j) = maxi,j:i≤j(pj − pi).

9. Let G be a graph with minimum degree 3. Show G contains a cycle of even length.

Solution: Consider the longest path in the graph, u − i1 − i2 − i3... − ik − v. Since
this is the longest path, all of the neighbors of both u and v lie on the path. Since

8

u has at least three neighbors (one of which is i1), let ix and iy be two of the other
neighbors of u. Now, if we assume without loss of generality x < y, we have three
cycles: u− i1...ix− u, of length x, u− i1...iy − u, of length y, and u− ix− ix+1...iy − u,
of length y− x+ 2. One of these cycles must be even, as if both x and y are both odd
then y − x+ 2 is even. Thus G contains an even cycle.

9

