
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#2 – Due at the beginning of class Thursday 02/04/16

1. (Kleinberg Tardos 7.27) Some of your friends with jobs out West decide they really
need some extra time each day to sit in front of their laptops, and the morning commute
from Woodside to Palo Alto seems like the only option. So they decide to carpool to
work. Unfortunately, they all hate to drive, so they want to make sure that any carpool
arrangement they agree upon is fair and doesn’t overload any individual with too much
driving. Some sort of simple round-robin scheme is out, because none of them goes to
work every day, and so the subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1, . . . , pk}. We say
that the total driving obligation of pj over a set of days is the expected number of times
that pj would have driven, had a driver been chosen uniformly at random from among
the people going to work each day. More concretely, suppose the carpool plan lasts for
d days, and on the ith day a subset Si ⊆ S of the people go to work. Then the above
definition of the total driving obligation ∆j for pj can be written as ∆j =

∑
i:pj∈Si

1
|Si| .

Ideally, we’d like to require that pj drives at most ∆j times; unfortunately, ∆j may
not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day — that is, a
sequence pi1 , pi2 , . . . , pid with pit ∈ St — and that a fair driving schedule is one in
which each pj is chosen as the driver on at most d∆je days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running time polyno-
mial in k and d.

2. Recall Karger’s algorithm for the global min-cut problem. In this problem we modify
the algorithm to improve its running time.

(a) Prove that if we stop the original Karger’s algorithm when the remaining number
of vertices is

max
{
d1 + n/

√
2e, 2

}
,

the probability that we have contracted an edge in the min-cut is less than 1/2.
Lets call this procedure Partial Karger.

(b) Now suppose we apply Partial Karger to two copies of G to produce graphs G1

and G2. We then recursively apply these steps to G1 and G2 and so on until each
recursive call returns a graph on two vertices. If r(n) is the running time of this
process as a function of the number of vertices n of G, derive a recursive equation
for r(n) and solve it to obtain an explicit expression for the running time (you
may use O(·) notation to simplify your recursive equation).

(c) Show that the algorithm in part (b) produces O(n2) contracted graphs on two
vertices each. Prove that the probability that at least one of them contains a
global min-cut is at least 1/ log(n) up to a multiplicative constant.

Hint: Think of the recursion as a binary tree with paths leading to the O(n2)
leaves representing the two-vertex contracted graphs.

(d) Compare the running time of the above algorithm to Karger’s original given the
same probability of failure.

3. An independent set in a graph is a set of vertices with no edges connecting them.
Let G be a graph with nd/2 edges (d > 1), and consider the following probabilistic
experiment for finding an independent set in G: delete each vertex of G (and all its
incident edges) independently with probability 1− 1/d.

(a) Compute the expected number of vertices and edges that remain after the deletion
process. Now imagine deleting one endpoints of each remaining edge.

(b) From this, infer that there is an independent set with at least n/2d vertices in
any graph with on n vertices with nd/2 edges.

4. Prove that a graph can only have at most
(
n
2

)
different cuts that realize the global

minimum cut value.

5. Exhibit a graph G = (V,E) where there are an exponential (in |V | = n, the number
of nodes) number of minimum cuts between a particular pair of vertices. Do this by
constructing a family of graphs parameterized on n and give a pair of vertices s, t such
that there are exponentially many minimum cuts between s and t.

6. Exhibit a directed graph that has cover time exponentially large in the number of
nodes. Contrast this with the cover time of undirected graphs discussed in class.

7. You are the sole proprietor of the company Widgets Inc., a supplier of quality widgets
to a large corporation in your country. You have just received a big order of w widgets
from the large corporation, and are preparing a shipment from your facility, s, to their
headquarters, t. Due to various idiosyncrasies in your country’s postal service, the
fastest way to deliver packages is to route them by hand and choose which postal hubs
the package will stop in before it reaches its final destination. However, occasionally
a hub’s computer will crash and massively delay all shipments exiting the city. Since
you want to reduce the effect of such a crash, you decide that you want to minimize
the number of widgets that are sent through any given hub, while still sending all w
widgets. Thus, if we model our country’s postal service as a graph G with a set of hubs
and cities V and a set of connections between hubs E, and assume that every edge in
our graph has infinite capacity (in other words, we can send as many widgets across
a given connection as we like), we would like to find the smallest number k such that
we can route all w widgets from s to t while ensuring that no city handles more than
k widgets. Find a polynomial time algorithm to do so.

8. Compute the cover time of a Hamiltonian cycle with n vertices.

9. Suppose we have a 2n × 2n (n ≥ 2) table where each cell is filled with an integer in
{1, 2, 3, ..., 2n2}. Moreover, each integer shows up exactly twice. Show that one can
pick 2n cells that satisfy all the following conditions: (1). all the numbers written in
these cells are distinct; (2). in each row exactly one cell is picked out; (3) in each

2

column exactly one cell is picked out.

10. After your success selling widgets, you have grown your business and now sell widgets
of many different sizes and shapes. Shipping these widgets requires special boxes which
you have custom built by a supplier. Unfortunately, having the supplier ship you these
boxes is very expensive. You notice that some of the smaller of the boxes you need
fit inside some of the larger ones, and seeing an opportunity to save money, you ask
your supplier to ship smaller boxes inside of larger ones. He agrees, as long as no two
boxes lie side-by-side inside of a larger one– in other words, as long as no two boxes
A and B lie inside box C if neither A contains B nor B contains A. (Otherwise, the
two inner boxes might damage each other during shipping.) Assuming you need n
different boxes and you know which of the boxes you need can fit inside others, find
a polynomial time algorithm to compute the minimum number of separate shipments
needed, and compute the algorithm’s running time.

3

