
CME 305: Discrete Mathematics and Algorithms

1 Random Walks and Electrical Networks

Random walks are widely used tools in algorithm design and probabilistic analysis and they have numerous

applications. Given a graph and a starting vertex, select a neighbor of it uniformly at random, and move to

this neighbor; then select a neighbor of this point at random, and move to it etc. The random sequence of

vertices selected this way is a random walk on the graph.

1.1 Basic Definitions

More formally, consider a random walk on G(V,E), starting from v0 ∈ V : we start at a node v0; if at the

t-th step we are at a node vt, we move to a neighbor of vt with probability 1
d(vt)

, where d(v) is the degree of

node v. The node v0 may be fixed, but may itself be drawn from some initial distribution P0. We denote by

Pt the distribution of vt:

Pt(i) = Pr[vt = i].

We denote by M = (pij)i,j∈V the matrix of transition probabilities where pij = 1
d(i) and 0 otherwise. In

matrix form, we can write M as DA where A is the adjacency matrix of G and D denotes the diagonal matrix

with (D)ii = 1
d(i) . The evolution of probabilities can be expressed by the simple equation Pt+1 = MTPt,

and hence

Pt = (MT )tP0.

We say that the distribution P0 is stationary (or steady-state) for the graph G if P1 = P0. In this case, of

course, Pt = P0 for all t > 0. For every graph G, the distribution

π(i) =
d(i)

2m
,

is stationary.

1.2 Markov Chains

Random walks on graphs are special cases of Markov chains, from the general theory of which we will state

a few relevant results. A Markov chain {X0, X1, ...} is a discrete-time random process defined over a set

of states S with a matrix P of transition probabilities. At each time step t the Markov chain is in some

state Xt ∈ S; its state Xt+1 at the next time step depends only on its current state, not the current time

or any previous states. Thus the only information needed to specify the random variables {X0, X1, ...} is

a distribution over the starting state X0 and the transition probabilities pij , the probability that the next

state will be j, given that the current state is i. The correspondence between random walks and Markov

chains is made clear by taking S = V and P = M .

A stationary distribution for a Markov chain is a probability distribution π over the states such that

π = PTπ.

A Markov chain is irreducible if for any two states i and j, there is a path of positive probability transitions

from i to j and vice versa.

The periodicity of a state i is the maximum integer T for which there exists an initial distribution q0 and

positive integer a such that if t does not belong to the arithmetic progression {a+Ti | i ≥ 0} then qt(i) = 0.

An aperiodic Markov chain is one in which all states have periodicity 1.

Theorem 1 (Fundamental Theorem of Markov Chains) Any irreducible, finite, and aperiodic Markov chain

has the following properties:
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1. There is a unique stationary distribution π such that π(i) > 0 for all states i.

2. Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)

t
= π(i).

In applying this theorem to random walks on simple connected graphs, we first note that the periodicity

of every state (vertex) is the greatest common divisor of the length of all closed walks in G. Thus the

random walk is aperiodic iff G is not bipartite. G connected implies the random walk is irreducible. We may

conclude that if G is connected and non-bipartite, then the distribution of vt tends to the unique stationary

distribution π(i) = d(i)/2m, as t → ∞, for any initial distribution P0. Additionally we may see that the

expected number of steps between two visits of a vertex i is 2m/d(i).

One interesting property of random walks on undirected graphs is their time-reversibility: a random walk

considered backwards is also a random walk. This can be verified by observing pijπ(i) = pjiπ(j). A heuristic

motivation for the above Markov chain-based result is stated as follows. Time-reversibility implies that a

stationary walk passes through an edge in every direction with the same frequency of on average once every

1/2m times. By the same argument, the expected number of steps between two visits of a vertex i is also

2m/d(i).

1.3 The Gambler’s Ruin on a Graph

A gambler enters a casino with a plan to play the following game. At each turn he will bet 1 dollar to win 2

dollars with probability 1/2 and lose his money with probability 1/2. He is determined to leave either when

he is “ruined” (i.e. he has no money left) or as soon as he collects N dollars. What is φk the probability

that he leaves with N dollars if he starts with k ≤ N dollars?

The intuitive answer is k/N . Since this is a fair game, the gambler should leave with the same amount of

money on average as when he started. Thus, starting with k dollars, his final expected value is φkN+(1−φk)0

and hence φk = k/N . One can make this argument formal with the help of the optional stopping theorem.

We can also see this process as a random walk on a path graph. We can write a system of equations

determining the value of every node

φ0 = 0, φN = 1, and φx = 1/2(φx−1 + φx+1)

which can easily be verified to have the solution vk = k/N .

Now, consider a generalization. Suppose we have a random walk in a graph like the one introduced at the

start of the lecture. We are placed on some starting vertex and may walk through the maze until we reach

either vertex a or vertex b. If we hit vertex b we win 1 dollar and we get nothing if we reach vertex a. What

is the probability φx we win 1 dollar starting at vertex x? Similar to the above example we can write the

system of equations

φa = 0, φb = 1, φx =
1

d(x)

∑
y: :y∼x

φy (1)

where d(x) is the degree of vertex x.

1.4 Graphs as Electrical Circuits

We may view a graph G(V,E) as an electrical network (or circuit). This network consists of wires such that

each (x, y) ∈ E is a resistor with resistance rxy across which flows a current ixy. The intersections of the



CME 305: Discrete Mathematics and Algorithms - Lecture 6 3

wires at vertices of V has a voltage vx measured at x ∈ V . For any such electrical network the following

properties hold.

1. Kirchoff’s Law: For any vertex, the current flowing in equals the current flowing out.∑
y : x∼y

ixy = 0 ∀ x ∈ V

2. Ohm’s Law: The voltage difference across any edge is equal to the current times the resistance.

vx − vy = rxyixy ∀ (x, y) ∈ E

Let us consider a network in which each resistor has a resistance of 1 Ohm. Furthermore, put a voltage or

charge of 1 volt at vertex a and ground vertex b. Then va = 0, vb = 1 and by Ohm’s law we have that

ixy = vx − vy for all x 6= y 6= b with (x, y) ∈ E. Applying Kirchoff’s law yields that
∑

y : x∼y(vx − vy) = 0,

which yields the following system of equations:

va = 0, vb = 1, vx =
1

d(x)

∑
y : x∼y

vy.

Observe that the voltages and probabilities in equation (1) follow the same law. Both φ and v are harmonic

functions: the value of each function at a node besides a and b is the average of its values of its neighbors.

They have the same value at at the boundary (nodes a and b). So by uniqueness principle1 they have the

same value everywhere.

The above argument provides a connection which can be exploited. In particular, various methods and

results from the theory of electricity often motivated by physics, can be applied to provide results about

random walks. We will explore a few of these.

Escape probability. Let us start by computing Pesc, the probability that the random walk starting at a

reaches b before returning to a.

Pesc =
1

d(a)

∑
x : x∼a

(vx − va) =
1

d(a)

∑
x : x∼a

vx .

Observe that
∑

x : x∼a vx =
∑

x : x∼a iax = ia which is the total current leaving vertex a with va = 0 and

vb = 1. The total current between two points when one unit of voltage is applied between them is referred

to as the effective conductance between a and b. The effective resistance between a and b is the inverse

quantity.

The effective resistance comes up quite often in the context of random walks. Here is another useful example:

Proposition 1 Let a and b be two adjacent vertices in G. The probability that a random walk starting at a

visits b for the first time using the edge {a, b} is Reff (a, b) in the corresponding electrical network.

Proof: First note that since a and b are adjacent, Reff (a, b) ≤ 1. Let us denote the desired probability

by q. Every time the random walk leaves a, it has a probability 1
d(a) of taking {a, b} before returning

to either a or b. It also has a probability 1 − Pesc of not visiting b before returning to a. In that case,

the probability of visiting b using the edge {a, b} is again q. Therefore, q = 1
d(a) + (1 − Pesc)q and hence

q = 1
d(a)Pesc

= Reff (a, b).

1See http://en.wikipedia.org/wiki/Potential_theory

http://en.wikipedia.org/wiki/Potential_theory
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Commute time. The expected hitting time H(x, y) between two nodes x and y is the expected number

of steps a random walk starting at vertex x takes before it visits vertex y for the first time. The commute

time κ(x, y) = H(x, y) +H(y, x) is the expected time to visit y and return to x.

Suppose that for each x ∈ V , we apply (externally) d(x) units of current and at some node y we remove∑
x∈V d(x) = 2m units of current. Here m = |E| the number of edges (wires). Then using Ohm’s and

Kirchoff’s laws we can show that

vx − vy = 1 +
1

d(x)

∑
z : z∼x

(vz − vy)

Similarly, for a random walk, the expected time it takes to reach node y from x is equal to 1 (for the

current step) plus the expected time from each of the neighbor nodes times the probability of going to those

neighbors. In other words,

H(x, y) = 1 +
∑

z : z∼x
H(z, y)/d(x)

The laws are identical so we conclude that H(x, y) = vx − vy.

Now consider repeating the above argument, exchanging the roles of x and y. We obtain H(y, x) = vy − vx
where vy, vx are determined by pushing d(v) units of current into each node v ∈ V and removing 2m from x.

If instead we pull d(v) units of current from each v and push 2m units into x, only the signs reverse and we

get H(y, x) = vx−vy. We then super-pose this reversed current flow on top of the original. All current flows

cancel except for 2m into x and 2m out of y, and the potentials simply add so that the potential difference

between x and y is H(x, y) +H(y, x) = κ(x, y). Thus we obtain the following well-known result.

Theorem 2 For all pairs of vertices x and y the commute time κ(x, y) between x and y is given by

κ(x, y) = H(x, y) +H(y, x) = 2mReff (x, y),

where Reff (x, y) is the effective resistance between x and y.

Cover time. The cover time C starting from a given distribution is the expected number of steps to

reach every node. If no starting distribution is specified, we mean to start the walk from the stationary

distribution. Cover time is particular to the graph the random walk is taking place over; we encourage the

reader to try to calculate the cover time for a few special classes of graphs such as complete graphs, paths,

and a path connected to a complete graph (also known as the lollipop graph!). For the sake of brevity, we

will mention only the following bound for cover time known as Matthew’s bound:

Theorem 3 The cover time starting from any node of a graph with n nodes is at most log n times the

maximum hitting time between any two nodes. In other words,

max
i,j∈V

H(i, j) ≤ C ≤ max
i,j∈V

H(i, j) log n.

The lower bound is obvious. We will sketch the upper bound with log n replaced with 2 log n.

Proof: Let b be the expected number of steps before a random walk visits more than half of the nodes,

and let h be the maximum hitting time between any two nodes. We will show that b ≤ 2h. The theorem is

easily followed afterwards. In 2h steps we have seen more than half of all nodes. By a similar argument, in

another 2h steps we have seen more than half of the rest etc.

Now to prove the statement assume, for simplicity, that n = 2k + 1 is odd. Let tv be the time when node v

is first visited. Then the time β when we reach more than half of the nodes is the (k + 1)-st largest of the

tv. Hence
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∑
v

tv ≥ (k + 1)β

and so

b = E(β) ≤ 1

k + 1

∑
v

E(tv) ≤ 2h.
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