
CME 305: Discrete Mathematics and Algorithms

1 Network Flow

A network N is a set containing:

• a directed graph G(V,E);

• a vertex s ∈ V which has only outgoing edges, we call s the source node;

• a vertex t ∈ V which has only incoming edges, we call t the sink node;

• a positive capacity function c : E 7→ IR+.

A flow f on a network N is a function f : E 7→ IR+. Flow f is a feasible flow if it satisfies the following

two conditions:

1. Edge capacity limit:

∀ e ∈ E, 0 ≤ f(e) ≤ c(e)

2. Conservation of flow:

∀ v ∈ V \ {s, t},
∑

e leaving v

f(e) =
∑

e entering v

f(e).

The value of a flow f is defined as

v(f) ≡
∑

e leaving s

f(e).

Since s and t are the only nodes that do not conserve flow, the value of f can be equivalently stated as the

amount of flow entering t:

Proposition 1 For any feasible flow,

v(f) =
∑

e leaving s

f(e) =
∑

e entering t

f(e)

Proof: This follows directly from conservation of flow.

v(f) =
∑

e leaving s

f(e)

=
∑

e leaving s

f(e)−
∑

v∈V/{s,t}

 ∑
e entering v

f(e)−
∑

e leaving v

f(e)

 (1)

=
∑

e entering t

f(e),

where the last line is due to the fact that each edge e appears twice in (1) - once as a leaving edge (with

positive sign) and once as an entering edge (with negative sign) - except those edges entering t which appear

exactly once and with positive sign.



2 CME 305: Discrete Mathematics and Algorithms - Lecture 3

An s-t cut (A,B) is a partition of V into subsets A and B such that s ∈ A and t ∈ B. We define the cut

value, c(A,B), to be the sum of capacities of all the edges going from set A to set B.

c(A,B) =
∑

e leaving A,

entering B

c(e)

Remark 1: Using a proof similar to Proposition 1, it may be shown that for any cut (A,B):

v(f) =
∑

e leaving A,

entering B

f(e) −
∑

e leaving B,

entering A

f(e) .

Remark 2: For any feasible flow f and cut (A,B) we note:

v(f) =
∑

e leaving A,

entering B

f(e) −
∑

e leaving B,

entering A

f(e) ≤
∑

e leaving A,

entering B

f(e) ≤
∑

e leaving A,

entering B

c(e) = c(A,B)

Therefore any s-t cut value is an upper bound on v(f). Given a network N , the max-flow problem is to

find a feasible flow with the maximum possible value. Remark 2 implies that

max
f feasible

v(f) ≤ min
(A,B)

c(A,B) .

We will show that equality is in fact attained by the max-flow and min-cut values.

1.1 Ford-Fulkerson Algorithm

In this section we develop the Ford-Fulkerson (FF) algorithm for finding the max-flow in a network. Ford-

Fulkerson may be seen as a natural extension of the following simple, but ineffective, greedy algorithm.

Algorithm 1 Greedy Max-Flow Algorithm (Suboptimal)

Initialize f(e) = 0 for all e ∈ E.

repeat

Find path P between s and t such that mine∈P (c(e)− f(e)) > 0, we call such a path unsaturated.

Let df = mine∈P (c(e)− f(e)); f(e) = f(e) + df , e ∈ P .

until No more unsaturated s-t paths

This greedy algorithm does not find the max-flow in general graphs. A simple counterexample can be seen

in Figure 1.



CME 305: Discrete Mathematics and Algorithms - Lecture 3 3

(a) Optimal flow (b) Suboptimal maximal flow

Figure 1: Two potential outcomes of the greedy algorithm. a) The optimal flow is achieved. b) No more

flow can be pushed greedily through the network.

In Figure 1(b), the greedy algorithm has made a bad choice for the first unit of flow to push through. There

are no remaining unsaturated s-t paths in the network, but the maximum flow has not been achieved. We

modify the algorithm such that we can revise the paths later in the run of the algorithm. This is the rough

idea of the Ford-Fulkerson algorithm.

In order to describe the FF algorithm, we first define a residual network of network N with respect to flow f .

The residual network R(N, f) is a network with vertex set V and with edge set Er constructed as follows:

For every e ∈ E:

• if f(e) < c(e) place an edge with capacity c′(e) = c(e)− f(e) in the same direction as e.

• if f(e) > 0 place an edge with capacity c′(e) = f(e) in the opposite direction of e.

The advantage of the residual network R(N, f) is that any path P from s to t in R(N, f) gives a path along

which we can increase the flow, including ones that reverse previously assigned flow. Building the residual

network and augmenting along an s-t path forms the core of Ford-Fulkerson algorithm.

Algorithm 2 Ford-Fulkerson, 1956

Initialize f(e) = 0 for all e ∈ E.

while there is a path P from s to t in R(N, f) do

send a flow of value df = mine∈P c′(e) in R along P .

update f in (N, f): set f(e) = f(e) + df ∀e ∈ P

rebuild the residual network R(N, f).

end while

Output f∗.

Theorem 1 If Ford-Fulkerson terminates, it outputs a maximum flow.

Proof: Suppose the algorithm terminates at step t, this means that there is no path from s to t in R(N, f∗);

s and t are disconnected. Let S be the set of nodes reachable from s in R(N, f∗), i.e., v ∈ S iff there exists a

path from s to v; let T = V \S. We claim that v(f∗) = c(S, T ). Before proving this claim, we recall that for

every feasible flow f and every cut (A,B), v(f) ≤ c(A,B) (Remark 2). Thus v(f∗) = c(S, T ) implies that

f∗ is the max-flow and (S, T ) is the minimum cut.

In order to prove v(f∗) = c(S, T ), first consider any edge e from S to T in the original network N . Edge e

must not exist in R(N, f), or else its endpoint in T would be reachable from s, contradicting the definition

of T . Thus it must be the case that f(e) = c(e) for any such e. Now we consider e′ from T to S in the

original network N . If f(e′) > 0 then there will be an edge in the opposite direction of e′ in R(N, f) i.e., an



4 CME 305: Discrete Mathematics and Algorithms - Lecture 3

edge from S to T , again contradicting the definition of T . We conclude that f(e′) = 0 for any such e′. Then

the claim follows by by substituting f(e) = c(e), f(e′) = 0 into the equation of Remark 1.

v(f) =
∑

e leaving S,

entering T

f(e) −
∑

e′ leaving T,

entering S

f(e′) .

Two important corollaries follow from the proof of Ford-Fulkerson:

Corollary 1 (Max-Flow/Min-Cut) The minimum cut value in a network is the same as the maximum

flow value.

Corollary 2 (Integral Flow) If all edge capacities in a network are non-negative integers, then there exists

an integral maximum flow.

1.2 Run Time of the Ford-Fulkerson Algorithm1

Theorem 1 is predicated on the Ford-Fulkerson algorithm terminating, i.e. reaching a state where no more

augmenting paths may be found in the residual network. The following lemma guarantees termination in

the case of integral capacities.

Lemma 1 If all edge capacities of N are integral, i.e. c(e) ∈ N ∪ {0} ∀e ∈ E, Ford-Fulkerson terminates.

Proof: Since the edge capacities are integral, the capacity of every edge in R(N, f) is always integral. At each

step, df is at least one; thus the value of flow f increases by at least one. Since v(f) ≤
∑

e leaving s c(e) <∞,

v(f) cannot increase indefinitely, hence the algorithm stops after a finite step.

Noting that finding an augmenting path through breadth-first search has a running time of O(m), the proof

of Lemma 1 implies that the running time of the Ford-Fulkerson algorithm is O(mv(f∗)) for integral c. The

following example shows that this bound allows very slow convergence in extreme cases.

Example: Define a flow network on four nodes: a source s, a sink t and two nodes a and b connected

as in Figure 2a. Consider the FF algorithm which on each iteration selects the augmenting flow path such

that nodes a and b are both in the path. The first two iterations are illustrated in the figure. Each such

iteration increases the value of the flow by 1 which implies that it will take v(f∗) = 2 · 106 iterations until

the algorithm terminates.

The O(mv(f∗)) running time bound is independent of how the augmenting paths are chosen in each step

of the FF algorithm. We may use heuristics to more carefully select which augmenting path to use in each

step; this approach allows run time bounds that are polynomial in the size of the input graph and do not

depend on the capacities.

1.2.1 Widest Augmenting Path (WAP)

We consider an implementation of the Ford-Fulkerson algorithm in which we pick at every iteration the

widest augmenting path in the residual network, where the width of a path in a capacitated network is the

1Some of the exposition in this section is borrowed from the Winter 2011 CS261 class notes written by Luca Trevisan. The

material referenced may be found at http://theory.stanford.edu/~trevisan/books/cs261.pdf (lectures 9-11).

http://theory.stanford.edu/~trevisan/books/cs261.pdf


CME 305: Discrete Mathematics and Algorithms - Lecture 3 5

(a) Original Network. (b) Iteration 1. (c) Iteration 2.

Figure 2: Residual Networks after two iterations of the Ford Fulkerson algorithm picking an augmenting

path s, a, b, t on the first iteration and s, b, a, t on the second.

minimum capacity of the edges in the path. In the network of the example above, the paths s, a, t and s, b, t

have width 106, while the path s, a, b, t has width 1.

Lemma 2 If N is a network with max-flow value v(f∗), then there is a path from s to t of width ≥ v(f∗)/m.

Theorem 2 Suppose that the network N has integral capacities. Then the WAP implementation of the

Ford-Fulkerson algorithm runs in time O(m2 logm log v(f∗)), where m = |E|, the number of edges in N .

Proof: From the above lemma, we see that if we implement the Ford-Fulkerson algorithm with the widest

path heuristic, then, after we have found augmenting paths, we have a solution such that, in the residual

network, the optimum flow has cost at most v(f∗) ·
(
1− 1

2m

)t
.

To see why, call vi the cost of the flow found by the algorithm after i iterations, and ri the optimum of the

residual network after i iterations of the algorithm. Clearly we have ri = v(f∗)− vi. Lemma 2 tells us that

at iteration i + 1 we are going to find an augmenting path of width at least ri · 1
2m (the factor of 2 comes

from the fact that each edge of N is possibly doubled in the residual network). This means that the cost of

the flow at the end of the (i+ 1)-th iteration is going to be vi+1 ≥ vi + ri · 1
2m , which means that the residual

optimum is going to be

ri+1 = v(f∗)− vi+1

≤ v(f∗)− vi − ri ·
1

2m

= ri

(
1− 1

2m

)

The algorithm started with v0 = 0 and r0 = v(f∗), so this inequality implies that rt ≤ v(f∗) ·
(
1− 1

2m

)t
. For

t > 2m log v(f∗), we may compute that v(f∗) ·
(
1− 1

2m

)t
< 1. Since rt is integer-valued, this means that

rt = 0 for t > 2m log v(f∗), i.e. the FF algorithm terminates within the first 1 + 2m log v(f∗) iterations.

The widest augmenting path in a residual network may be computed using a dynamic programming approach

in O(m logm) time. Then the total run time of WAP Ford-Fulkerson is O(m2 logm log v(f∗)).

The running time of FF with WAP is polynomial in the bit description of the input since it takes at least

log v(f∗) binary bits to encode the values of the capacities of our network. This is called a weakly polynomial

time the algorithm. A strongly polynomial time algorithm is one that is polynomial in only the size of the

problem which is given in terms of n and m. An example of such an algorithm for the max-flow problem is

given in the next section.



6 CME 305: Discrete Mathematics and Algorithms - Lecture 3

1.2.2 Shortest Augmenting Path (SAP)

The shortest augmenting path implementation of the FF algorithm (also known as the Edmonds-Karp

algorithm) chooses at each iteration the augmenting path containing the fewest number of edges.

Lemma 3 If, at a certain iteration, the length of a shortest path from s to t in the residual network is l,

then at every subsequent iteration it is ≥ l. Furthermore, after at most m iterations, the distance from s to

t must become ≥ l + 1.

Theorem 3 The SAP implementation of the Ford-Fulkerson algorithm runs in time O(m2n), where m =

|E|, n = |V | are the numbers of edges and vertices in N .

Proof: The shortest augmenting path in the residual network at each iteration can be identified in O(m)

time using breadth-first search, and the above lemma gives us a way to upper bound the number of possible

iterations. In particular, we note that as long as there is a path from s to t, the distance from s to t is at most

n− 1. Then the lemma tells us that after at most m · (n− 1) iterations, s and t must become disconnected

in the residual network, at which point the algorithm terminates. Thus the SAP Ford-Fulkerson algorithm

runs in time O(m2n).

2 Applications of Network Flow

In this section we present a selection of problems that may be solved by applying the max-flow/min-cut

theorem to an appropriately constructed network.

2.1 Baseball Elimination2

Suppose we have a set S of baseball teams and up to this point in the season, each team x ∈ S has won wx

games. Through the remainder of the season every pair of teams x, y ∈ S must still play gxy games against

each other. The question is whether a particular team z will be able to “win the division,” i.e. whether there

exists an outcome assignment for all remaining games such that z will finish with at least as many wins as

any other team.

Example: Consider the (pre-1998) AL East division, where at some late date in the season we have the

following win totals and games left to play:

Wins Games to Play

NY Y : 93 NY Y −BOS : 1

BOS : 89 NY Y − TOR : 6

BAL : 86 NY Y −BAL : 1

TOR : 88 BOS −BAL : 3

TOR−BAL : 1

Can Boston end up winning the division? In this case the answer is no; we establish a proof by noting that

the maximum number of wins Boston can achieve is 93, while the set of teams {NY Y, TOR} must average

(93 + 88 + 6)/2 = 93.5 > 93 wins, implying that one of those teams’ win total must exceed 93.

2See Kleinberg and Tardos Section 7.12



CME 305: Discrete Mathematics and Algorithms - Lecture 3 7

In order to formulate the elimination question as a flow problem, we first assume that team z wins all of

the games it has yet to play. Suppose that this leaves z with m wins at the season’s end. If z is to win the

division, we need a way to allocate all wins from the other games not involving z so that no team’s win total

exceeds m. We attempt to do this by solving the max-flow problem on the following network:

• Consider nodes s and t to be a “win source” and “win sink” respectively. Let S′ = S \ {z}, and

for each team x ∈ S′ include a node vx. For every pair of teams x, y ∈ S′ include a node uxy. So

V = {s, t} ∪ {vx | x ∈ S′} ∪ {uxy | x, y ∈ S′, x 6= y}.

• From the win source s to each node uxy add the directed edge (s, uxy) with capacity gxy. This represents

the fact that the games teams x and y play have at most gxy wins to assign.

• From each node uxy, add two edges (uxy, vx), (uxy, vy) with infinite capacity. Flow on these edges

represents an assignment of wins from the x, y games to the teams.

• From each team node vx, add the edge (vx, t) with capacity m − wx. This capacity ensures that vx
cannot receive enough flow from the game nodes (i.e. x cannot be assigned enough wins) to surpass

team z in total wins.

Let g∗ =
∑

x,y∈S′,x 6=y gxy, the total capacity leading out from the win source s. From the definition of the

network the following claim is clear:

Claim 1 The maximum flow in the network is g∗ iff there is an assignment of wins so that no team’s win

total exceeds m. That is, team z is mathematically eliminated from contention iff the maximum flow is

strictly less than g∗.

Define an elimination proof set to be T ⊂ S such that

1

|T |

∑
x∈T

wx +
∑

x,y∈T,x 6=y

gxy

 > m.

If T satisfies the above inequality, we may conclude that some team in T must end up with more than m

wins; hence the existence of T gives a proof for z’s elimination. The following lemma is left as an exercise

to the reader.

Lemma 4 Let (A,B) be the min-cut of the above network corresponding to the max-flow. If c(A,B) < g∗,

then T = {x ∈ S | vx ∈ A} is an elimination proof set.

2.2 Graph Connectivity3

An amateur graph theorist, in his scribblings, might invent the following two definitions of k-edge connec-

tivity. G is k-edge connected if:

1. G remains connected after removing any (k − 1) edges.

OR

2. There are at least k edge-disjoint paths between every pair of vertices in G.

3See Kleinberg and Tardos Section 7.6



8 CME 305: Discrete Mathematics and Algorithms - Lecture 3

Clearly if G satisfies definition 2 then it also satisfies definition 1. How about the other way around?

Theorem 4 If a graph G(V,E) remains connected after removing any (k − 1) edges then there are at least

k edge-disjoint paths between every pair of vertices in G.

Proof: Suppose that G satisfies definition 1 above, and let s, t ∈ V . Consider the directed version G′ of G

formed by replacing all edges {u, v} with the two edges (u, v) and (v, u). Now let N be the network with G′

as its underlying graph, s and t as source and sink, and all edges with capacity 1.

We claim that if we can show there are k edge-disjoint paths from s to t in G′, then the same holds in G. To

see this, note that we may turn all directed paths into undirected paths as long as two directed paths P1 and

P2 don’t use both directions (u, v) and (v, u) of an undirected edge {u, v}. If this is the case, however, we

may simply have the two paths swap endings: define P̃1 to be the path following P1 from s to u and then P2

from u to t, define P̃2 to be the path following P2 from s to v and then P1 from v to t. Then if we consider

P̃1 and P̃2 undirected, neither path uses {u, v}. All such conflicts can be inductively removed, proving the

claim.

Now in order to find k edge-disjoint paths from s to t in G′, we compute the maximum flow in N . The fact

that G remains connected after removing any (k− 1) edges implies that the minimum cut in N has value at

least k; thus the max-flow has value at least k. Since there must be an integral maximum flow in which the

flow on every edge of N is (0, 1)-valued, we may exhibit k edge-disjoint paths from s to t in G′ by greedily

tracing paths from s to t along edges with flow 1.

2.3 Project Selection4

Suppose we are given:

• a set of projects {T1, . . . , Tn},

• project Ti has a profit Pi which can be positive or negative,

• a project can be a prerequisite of another.

We would like to know what is the optimal subset of projects, i.e., the subset that satisfies the prerequisite

requirement and has the maximum total profit?

Example: Consider a strip mine with layers of rocks and valuable minerals. Extracting a portion of a

layer is a project that may be net profitable (valuable minerals) or net costly (hard rock). In order to reach

minerals deep in the mine, we must remove all of the material covering it; each project is a prerequisite for

those lying below it.

We formulate the project selection problem as a min-cut instance as follows. Define a network N on G(V,E)

in the following way. Let V = {s, t} ∪ {T1, T2, . . . Tn}. If Pi ≥ 0 include the edge (s, Ti) with capacity Pi;

if Pi < 0 include the edge (Ti, t)with capacity Pi. If Tj is a prerequisite of Ti include the edge (Ti, Tj) with

capacity ∞.

Let (S, T ) be the cut with the minimum value where s ∈ S and t ∈ T . S′ = S\{s} is a set of projects obeying

the prerequisite rules, or else there would be an edge of capacity ∞ crossing the cut. This cannot occur

because (S,T) is a min-cut and we can trivially exhibit cuts with finite value, e.g. ({s}, V \ {s}). Similarly,

we can show that for any (A,B) with c(A,B) <∞, A′ = A \ {s} is a feasible subset of tasks. Thus we aim

4See Kleinberg and Tardos Section 7.11



CME 305: Discrete Mathematics and Algorithms - Lecture 3 9

to show that finding the min-cut is equivalent to maximizing total profit, i.e. we show that the total profit

of S′ is greater than or equal to the total profit of A′. Let P+ =
∑

i PiI(Pi ≥ 0) and P− =
∑

i PiI(Pi < 0),

where I(·) is the indicator function. It is easy to show that:

c(A,B) = P+ −
∑
Pi∈A

PiI(Pi ≥ 0)−

(
P− −

∑
Pi∈A

PiI(Pi < 0)

)
.

Thus c(S, T ) ≤ c(A,B) implies that

P+ − P− −

(∑
Pi∈S

PiI(Pi ≥ 0)−
∑
Pi∈S

PiI(Pi < 0)

)
≤ P+ − P− −

(∑
Pi∈A

PiI(Pi ≥ 0)−
∑
Pi∈A

PiI(Pi < 0)

)

or equivalently ∑
Pi∈S′

PiI(Pi ≥ 0)−
∑

Pi∈S′

PiI(Pi < 0) ≥
∑

Pi∈A′

PiI(Pi ≥ 0)−
∑

Pi∈A′

PiI(Pi < 0)

Note that the left hand side is the total profit of S′ and the right hand side is the total profit of A′. Thus

we have shown that any other feasible solution has profit at most equal to the profit of S′.

2.4 Bipartite Matching5

A bipartite graph G(V,E) is a graph whose vertex set can be partitioned as V = X ∪Y , with the property

that every edge e ∈ E has one end in X and the other end in Y .

A matching M ⊂ E is a selection of edges such that for all e, e′ ∈M either e = e′ or e ∩ e′ = ∅.

A perfect matching is a matching M such that every v ∈ V belongs to some e ∈M .

Theorem 5 A bipartite graph G(V = X∪Y,E) with |X| = |Y | = n has a perfect matching iff for all S ⊂ X,

|S| ≤ |N(S)|. N(S) denotes the neighbors of S; N(S) = {v ∈ V | {u, v} ∈ E, u ∈ S}.

Proof: The forward direction is trivial; the edges of a perfect matching provide a unique neighbor for each

node in S. For the other direction, suppose for contradiction that G has no perfect matching but |S| ≤ |N(S)|
holds for all S ⊂ X. We frame the matching problem in terms of network flow by turning G into a network

N as follows:

• Direct all edges in G from X to Y and give them each capacity ∞.

• Add a node s and an edge (s, x) for each x ∈ X with capacity 1.

• Add a node t and an edge (y, t) for each y ∈ Y with capacity 1.

It is clear from the construction of N that G has a perfect matching iff the max-flow in N has value n. This

means that G has a perfect matching iff the min-cut has value n; therefore our contradiction assumption

implies that the min-cut has value strictly less than n. Consider a min-cut (A,B) and let S = A∩X. Then

all of the edges from s into X \ S cross the cut; these edges have total capacity |X \ S|. Now, all neighbors

of S in G must also lie in A, i.e N(S) ⊂ A, or else an edge of capacity ∞ would cross the cut. Then all of

5See Kleinberg and Tardos Section 7.5



10 CME 305: Discrete Mathematics and Algorithms - Lecture 3

the edges from the nodes of N(S) to t cross the cut; these edges have total capacity |N(S)|. We have the

equations:

|S|+ |X \ S| = |X| = n

|X \ S|+ |N(S)| ≤ c(A, b) < n

which together imply that |N(S)| < |S|, a contradiction.


	Network Flow
	Ford-Fulkerson Algorithm
	
	Widest Augmenting Path (WAP)
	Shortest Augmenting Path (SAP)


	Applications of Network Flow
	
	
	
	


