
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

Midterm Review Session 02/10/15

Note that these solutions are compact and only provide the key ideas in answer of the
question. They should not be considered model solutions. More complete answers are
expected on homeworks and in exams.

1. Hamiltonian Paths and Cycles

(a) Show that determining whether a graph contains a Hamiltonian Path is at least
as hard as determining whether a graph contains a Hamiltonian Cycle

Solution: A Hamiltonian Path is a path that exhausts all the edges. Given a
black box for HP we want to show that we can solve HC. Fix some node i, if
there is a HC then there must exist a HP between node i and (at least) one of its
neighbors j. For a given neighbor j delete the edge (i, j). Also delete all but one
edge incident to i and all but one edge incident to j, call the remaining edges a
and b. For each choice of a and b check if there is a HP. Such a path must start
at i and end at j. If you find such a path after iterating over all neighbors j of i
then a HC exists. Else a HC does not exist.

(b) Show that determining whether a graph contains a Hamiltonian Cycle is at least
as hard as determining whether a graph contains a Hamiltonian Path

Solution: Given a black box for HC we want to show that we can find HP. Add
a new node α to the graph, add edges (α, i) for every node i in the original graph.
If there is a HC on the new graph then there must exist a HP on the original
graph.

(c) Suppose you have a black box that takes input a graph and gives output Y ES if
and only if the graph contains a Hamiltonian Cycle. Show how to use this black
box to find a Hamiltonian Cycle.

Solution: Check if the graph contains a HC, if it does not stop and return NO.
Consider edge (i, j). As there is a HC, it must traverse two of the edges incident
with j. Delete all but two of the edges incident with j: keep edge (i, j) and one
other edge a. Call to the black box. If the black box returns Y ES then edges
(i, j) and a are in the HC. If the black box returns no, iterate through the other
edges a. If the black box returns NO for all edges a then edge (i, j) is not in the
HC.

2. Effective Resistances

For each of the following graphs determine the effective resistance between the given
pairs of nodes exactly, and determine bounds on the covering time of the graph.

(a) Lollipop graph with node i in the clique and node j in the stick.

Solution: Let node i be in the clique, node k be at the base of the stick and
node j be at the tip of the stick. Then by the series rule Rij = Rik +Rkj. By the
series rule we can see Rkj = n/2. So we must now analyze Rik.

Within the clique there is 1 path direct from i to k and (n− 4)/2 distinct paths
from i to k via some other node (there are edges between these intermediate nodes,
however we ignore them - this can not decrease the effective resistance hence our
result will be an upper bound). By the parallel rule:

Rik =
1

1/1 + 1/2 + · · ·+ 1/2
=

1

1 +
∑(n−4)/2

`=1 1/2
=

4

n

(b) Barbel graph with nodes i and j in separate cliques.

Solution: Let node i be in the first clique, node k1 be in the first clique and
adjacent to node k2 in the second clique. Let node j be in the second clique.
Then by the series rule Rij = Rik1 +Rk1k2 +Rk2j. Clearly Rk1k2 = 1. The analysis
of Rik1 and Rk2j follows in same pattern as for the clique in the lollipop graph
giving:

Rij =
4

n
+ 1 +

4

n

(c) Cycle graph with effective resistance as a function of the distance between i and
j.

Solution: Let d (1 ≤ d ≤ n/2) denote the distance between i and j. There are
two paths from i to j, one of length d and the other of length n − d. Hence by
the parallel rule:

Rij =
1

1
d

+ 1
n−d

=
d(n− d)

n

This can be differentiated with respect to d to find the distance that maximizes
the effective resistance between any nodes i and j in the cycle.

3. Integrality Problems as Max Flow

These problems take 3 stages:

(a) Construct a flow problem

(b) Show that a certain (maximum) flow is possible on the graph

(c) Relate the solution from Ford-Fulkerson to the original problem

(a) Several families go out to dinner together. To increase their social interaction,
they would like to sit at tables so that no two members of the same family are at
the same table. Assume that the dinner contingent has p families and that the
ith family has qi members. Assume also that there are t tables, and that the jth
table has a seating capacity of bj. Show how to find a satisfying assignment of
people to tables in polynomial time.

Solution: Construct the graph as follows: Create one node for each family i and
create one node for each table j. Create a source node s and a sink node t. Let
there be edges (i, j) for all choices of i and j with capacity 1. Let there be edges
(s, i) for all choices of i with capacity qi. Let there be edges (j, t) for all choices of

2

j with capacity bj. We have transformed this problem into a flow problem with
integer capacities which can be solved (with integer flows) by Ford-Fulkerson
algorithm.

Part 2 is not required for this problem. We must assume that the problem is
feasible.

Given a solution to the flow problem. If edge (i, j) is saturated in the flow problem
then family i sends one person to sit at table j.

(b) You are given an N × N matrix A such that each entry of the matrix is a non-
negative number. Further, the sum of the entries in any row or column is an
integer. You are allowed to round each fractionally entry in the matrix i.e. to
change each non-integer entry to either the next higher or next lower integer.
Prove that there is a way of rounding each entry such that the row and column
sums remain unchanged.

Solution: We carry out some preprocessing before converting to a flow problem.
Begin by removing all the integer parts from every entry in the matrix A. So
aij ∈ [0, 1). As we have only removed integer quantities the row and column sums
are still integer. Let ki denote the sum of the ith row and kj denote the sum of
the jth column. Then we need to choose ki entries in the ith row to be 1 and the
remaining entries to be zero - in such a way that when we do this for all rows i
the corresponding column constraints are satisfied.

Create one node for each row i and create one node for each column j. Create a
source node s and a sink node t. Let there be an edge (i, j) with capacity 1 if we
can put a 1 in entry (i, j) of the matrix (so aij 6= 0). Let there be edges (s, i) for
all choices of i with capacity ki. Let there be edges (j, t) for all choices of j with
capacity kj. We have transformed this problem into a flow problem with integer
capacities which can be solved (with integer flows) by Ford-Fulkerson algorithm.

In order for the flow to satisfy the original problem we need to show that the
maximum flow is

∑
i ki =

∑
j kj. Saturate every edge (s, i) and (j, t), let the flow

along edge (i, j) be equal to aij. This is a feasible (non-integer) flow that has value∑
i ki. If we consider the cut S = {t} then we have a cut that obtains the same

value as this flow. Hence (by strong duality) both the flow and cut are optimal.

Given a solution to the flow problem. If edge (i, j) is saturated then we set aij = 1
otherwise we set aij = 0.

4. Greedy Max-Cut

Consider the greedy algorithm that, given an ordering v1, . . . , vn of the vertices, assigns
v1 to set A, then greedily partitions the other vertices (by sequentially assigning each
unassigned vertex v to either A or B according to whether v has more neighbors already
assigned to B or more neighbors already assigned to A.) Assume that ties are broken
by assigning the point to set A. Prove that the cut found by this greedy algorithm cuts
at least (|E|+ |B|)/2 edges, where |B| is the size of set B at the end of the algorithm.

Solution: The solution to this algorithm mixes ideas from randomized and determin-
istic algorithms. This approach is not a major focus on the course. We give the key
intuition below.

3

Consider pausing the algorithm when it is considering assigning the ith node. We want
to compare three possible assignments:

cuts(v1, . . . , vi−1)+cutrandom(vi) + Ecutsrandom(vi+1, . . . , vn)

cuts(v1, . . . , vi−1)+cutvi∈A(vi) + Ecutsrandom(vi+1, . . . , vn)

cuts(v1, . . . , vi−1)+cutvi∈B(vi) + Ecutsrandom(vi+1, . . . , vn)

Each line gives the number of edges in the cut given that nodes v1, . . . , vi−1 have already
been assigned, assuming nodes vi+1, . . . , vn will be randomly assigned. The thing that
differs between the three lines is how node vi is assigned.

By expectations the average of the 2nd and 3rd lines must be equal to the random
assignment. So if we deterministically assign a node to B then the third line must be
greater that the first line by at least 1/2. Over every assignment to B we accumulate
|B|/2 worth of these small improvements over the randomized algorithm. Hence the
deterministic algorithm must achieve at least |B|/2 better than the random algorithm.
Hence |E|/2 + |B|/2 = (|E|+ |B|)/2 is a lower bound on the cut size.

5. K-SAT

Suppose you have a satisfiability problem where every clause contains at most K literals
(K > 3). Reduce this problem to 3-SAT. Explain why in general this problem can not
be reduced to 2-SAT.

Solution: Consider the clause (A ∪ B ∪ C ∪ D) we can break it into two clauses of
size 3 as follows:

(A ∪B ∪ C ∪D) ≡ (A ∪B ∪ α) ∩ (ᾱ ∪ C ∪D)

where α is a new literal. If C ∪D is true then α is true so both clauses are satisfied. If
A∪B is true then α is false so both clauses are satisfied. If A∪B∪C ∪D is false then
no choice of α can satisfy both clauses. Hence the new pair of clauses is equivalent to
the original clause.

The above idea can be applied iteratively:

(A ∪B ∪ C ∪D ∪ E ∪ F) ≡ (A ∪B ∪ α) ∩ (ᾱ ∪ C ∪ β) ∩ (β̄ ∪D ∪ γ) ∩ (γ̄ ∪ E ∪ F)

So a clause with K literals can be replaced by K − 2 clauses each with 3 literals.

Why can we not reduce to 2-SAT? Because we have to add a new literal every time
we break apart an old clause. So some clauses must contain two of the new literals
(α, β, γ) and one of the original literals.

4

