Discrete Mathematics and Algorithms Qualifying Exam

1. (30 points) Consider the following problem: Given n items with sizes $a_{1}, a_{2}, \cdots a_{n}$ all in $(0,1]$, find a packing in unit size bins that minimizes the number of bins used.
(a) Prove that the following algorithm is a factor 2 approximation: Consider the items in an arbitrary order. In the $i^{t h}$ step, suppose you have a list of partially packed bins, say $B_{1}, B_{2}, \ldots, B_{k}$. If possible, put a_{i} into any one of them. If a_{i} does not fit into any of these bins, open a new bin B_{k+1} and put a_{i} in it.
(b) Give an example on which the above algorithm does at least as bad as $5 / 3$ of OPT, where OPT is the number of bins in the optimal packing.
(c) Consider a modification of the algorithm in part (a). At the $i^{\text {th }}$ step, suppose you have a list of partially packed bins, say $B_{1}, B_{2}, \ldots, B_{k}$. You may only put a_{i} into bin B_{k}. If a_{i} does not fit into bin B_{k}, open a new bin B_{k+1} and put a_{i} in it. Prove that this modified algorithm also gives a factor 2 approximation.
2. (20 points) A simple graph $G(V, E)$ is called Hamiltonian if it contains a cycle which visits all nodes exactly once. Prove that if every vertex has degree at least $|V| / 2$, then G is Hamiltonian.
