Discrete Mathematics and Algorithms Qualifying Exam June 2013

- 1. (30 points) Consider the following problem: Given n items with sizes $a_1, a_2, \dots a_n$ all in (0, 1], find a packing in unit size bins that minimizes the number of bins used.
 - (a) Prove that the following algorithm is a factor 2 approximation: Consider the items in an arbitrary order. In the i^{th} step, suppose you have a list of partially packed bins, say B_1, B_2, \ldots, B_k . If possible, put a_i into any one of them. If a_i does not fit into any of these bins, open a new bin B_{k+1} and put a_i in it.
 - (b) Give an example on which the above algorithm does at least as bad as 5/3 of OPT, where OPT is the number of bins in the optimal packing.
 - (c) Consider a modification of the algorithm in part (a). At the i^{th} step, suppose you have a list of partially packed bins, say B_1, B_2, \ldots, B_k . You may only put a_i into bin B_k . If a_i does not fit into bin B_k , open a new bin B_{k+1} and put a_i in it. Prove that this modified algorithm also gives a factor 2 approximation.
- 2. (20 points) A simple graph G(V, E) is called Hamiltonian if it contains a cycle which visits all nodes exactly once. Prove that if every vertex has degree at least |V|/2, then G is Hamiltonian.