ICME QUALIFYING EXAM

DISCRETE MATHEMATICS AND ALGORITHMS

Let $G(V, E)$ be a connected d-regular graph, $v_{0} \in V(G)$, and assume that at each node, the ends of the edges incident with the node are labelled $1,2, \cdots d$. A traverse sequence (for this graph, starting point, and labelling) is a sequence ($h_{1}, h_{2}, \cdots h_{t}$) $\subseteq\{1, \cdots d\}^{t}$ such that if we start a walk at v_{0} and at the i'th step, we leave the current node through the edge labelled h_{i}, then we visit every node. A universal traverse sequence (for parameters n and d) is a sequence which is a traverse sequence for every d-regular graph on n nodes, every labelling of it, and every starting point. Prove the following:

For every $d \geq 2$ and $n \geq 3$, there exists a universal traverse sequence of length $O\left(d^{2} n^{3} \log n\right)$.
Hint: Use a probabilistic argument.

