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There are some common techniques to approach a discrete math problem. Let us go over
these techniques and discuss how to apply them to new problems (e.g., homework assign-
ments).

1. Proof by induction: most discrete math problems are associated with a positive
integer (e.g., the number of edges or vertices in graphs). It is natural to consider
induction.

Examples in HWs: HW1.2.b, HW1.5.b

Example If a graph G on n vertices contains no triangle then it contains at most n2/4
edges.

Solution: We proceed by induction on n. For n = 1 and n = 2, the result is trivial,
so assume that we know it to be true for n− 1 and let G be a graph on n vertices. Let
x and y be two adjacent vertices in G. As above, we know that d(x) + d(y) ≤ n. The
complement H of x and y has n − 2 vertices and since it contains no triangles must,
by induction, have at most (n− 2)2/4 edges. Therefore, the total number of edges in
G is at most

e(H) + d(x) + d(y)− 1 ≤ (n− 2)2/4 + n− 1 ≤ n2/4

where the -1 comes from the fact that we count the edge between x and y twice.

Example (Turan’s theorem) If a graph G on n vertices contains no copy of Kr + 1,
the complete graph on r + 1 vertices, then it contains at most (1− 1/r)(n2/2) edges.

2. Proof by contradiction: sometimes it is difficult to argue directly and simpler to
assume the proposition is false and derive contradiction.

Examples in HWs: HW1.4.

Example

3. Proof by enumeration: If the number of possible cases are manageable, it is simpler
to enumerate all the cases and consider them one by one.

Example in HWs: HW1.1, HW1.6.

Example The four color conjecture (now it becomes a theorem) that any map in a
plane can be colored using four-colors in such a way that regions sharing a common
boundary (other than a single point) do not share the same color. is proved by enu-
merating the 1,936 reducible configurations (later reduced to 1,476) which had to be
checked one by one by computer and took over a thousand hours.

4. Proof by decomposition: Discrete objects have rich sub-structures (e.g., any undi-
rected graph is a collection of connected components, any undirected graph without
cycles is a collection of trees). By exploiting the properties of sub-structures, it is
simpler to prove that the proposition holds for them as a first step, then extend to
general case.



Examples in HWs: HW1.1, HW1.3.

Example: If a graph is bipartite if and only if each of its connected components is
bipartite.

5. Proof by construction: The most creative way to prove a proposition is to construct
an example. This is useful when the proposition has the form “there exist ...”.

Examples in HWs: HW2.1, HW2.2, HW2.6

Example The nonnegative integers d1, ..., dn are the vertex degrees of some graph if
and only if

∑
di is even.

Solution: Necessity: obvious

Sufficiency: Suppose that
∑

di is even. We construct a graph with vertex set v1, ..., vn
and d(vi) = di for all i. Since

∑
di is even, the number of odd values is even. First

form an arbitrary pairing of the vertices in {vi: di} is odd. For each resulting pair,
form an edge having these two vertices as its endpoints. The remaining degree needed
at each vertex is even and nonnegative; satisfy this for each i by place bdi/2c loops at
vi.

6. Other techniques: 1) By assuming “something” that is as largest (smallest) as pos-
sible.

Example in HWs: HW1.4

Example A connected graph is Eulerian if and only if every vertex has even degree.

Solution: The degree condition is clearly necessary: a vertex appearing k times in an
Euler tour (or k+ 1 times, if it is the starting and finishing vertex and as such counted
twice) must have degree 2k.

Conversely, let G be a connected graph with all degrees even, and let

W = v0e0...el−1vl

be a longest walk in G using no edge more than once. Since W cannot be extended, it
already contains all the edges at v. By assumption, the number of such edges is even.
Hence , so W is a closed walk. Suppose W is not an Euler tour. Then G has an edge
e outside W but incident with a vertex of W , say e = uvi. Then the walk

ueviv0e0...el−1vl

is longer than W , a contradiction.

Example: If every vertex of a graph G has degree at least 2, then G contains a cycle.

Another Solution: Let A be the largest independent set in the graph G. Since the
neighborhood of every vertex x is an independent set, we must have d(x) ≤ |A|. Let
B be the complement of A. Every edge in G must meet a vertex of B. Therefore, the
number of edges in G satisfies

e(G) ≤
∑
x∈B

d(x) ≤ |A||B| ≤ (|A|+ |B|)2/4 ≤ n2/4
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One can also find the condition when the equality holds.

2) If the proposition does not hold for any n, then n0 is the smallest number such that
the proposition is not true.

Advice: for a new problem and you have no idea of how to solve it, just think about these
techniques one by one, you will get somewhere at least. It is also possible that you need
to combine several techniques.
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