
CME 305: Discrete Mathematics and Algorithms

1 Global Min-Cut

In the previous sections we have used network flow to find s-t cuts of minimum value (capacity) in a graph.

When the capacities are all unit this corresponds to the fewest number of edges which disconnect the source

s from the sink t. We now look a variation of this problem which asks for a global cut using the minimum

number of edges to disconnect a graph. In this section we give an example of a class of algorithms known as

randomized algorithms to solve the global min-cut problem.

Given an undirected graph G(V,E), a global min-cut is a partition of V into two subsets (A,B) such

that the number of edges between A and B is minimized. Note that the value of the global min-cut is the

minimum over all possible s-t cuts. This suggests one solution to the problem of finding the global min-cut:

compute the min s-t cut for all pairs s, t ∈ V . This algorithm requires O(n2) calls to a min s-t cut (max

s-t flow) solver. Note that we can adapt a Ford-Fulkerson based flow algorithm to an undirected graph by

introducing two opposing directed edges for each undirected edge. A faster scheme can be implemented by

noting that any node s must appear in one of A or B, meaning we can reduce the number of min s-t cut

solves by a factor of n: we may fix s and find min s-t cut for all t ∈ V . This solution still requires O(n) calls

to a min s-t cut solver.

Historically, the intuition was that global min-cut was a harder problem than s-t cut. David Karger was

able to show that this is not the case with a randomized algorithm.

Algorithm 1 Karger’s Randomized Global Min-Cut

repeat

Choose an edge {u, v} uniformly at random from E.

Contract the vertices u and v to a super-vertex w.

Keep parallel edges but remove self-loops.

until G has only 2 vertices.

Report the corresponding cut.

Theorem 1 The probability that the algorithm finds the minimum cut in G is at least 2/n2.

Proof: Let F be the set of edges in a global min-cut and suppose |F | = k. Let Ei be the event that the

algorithm does not contract an edge from F in step i. At step 1, since the minimum cut has value k, the

degree of each vertex must be at least k. This together with the fact that the sum of the degrees is twice

the number of edges implies that |E| ≥ kn/2.

Then the probability that the first edge picked does not belong to F is therefore:

Pr(E1) = 1− k

|E|

≥ 1− 2

n

Similarly,

Pr(E2|E1) ≥ 1− 2

n− 1

Pr(Ei|E1 ∩ E2 ∩ . . .) ≥ 1− 2

n− i+ 1

2 CME 305: Discrete Mathematics and Algorithms - Lecture 4

Combining these to get the total probability of success gives

Pr(success) = Pr(E1 ∩ E2 ∩ . . . ∩ En−2)

≥ Pr(E1)Pr(E2|E1) . . . P r(En−2|E1 ∩ . . . En−3)

≥ (1− 2

n
)(1− 2

n− 1
) . . . (1− 2

3
)

≥ 2
(n− 2)!

n!
≥ 2

n(n− 1)
,

So the algorithm will succeed at with probability at least 2/n2.

The probability of finding a min-cut seems low at face value, and goes to zero as n → ∞ . However, if we

run the algorithm t times and output the smallest min-cut found over all runs, the probability of success

will be at least

1− (1− 2

n2
)t.

So if we set t = cn2 for some constant c, the probability of failure will be at most (1− 2
n2)cn

2 ≤ e−2c. Thus

to ensure the probability of failure is smaller than some fixed constant ε, it is only necessary to run the

algorithm 1
2 log(1

ε)n2 times.

From the proof of Theorem 1 we may see that the probability of failure (contracting an edge of F) is much

greater for later steps of the algorithm. In the last step alone we can only guarantee a successful contraction

1/3 of the time. It would seem that we can improve the success probability with little extra work by

repeating the last few steps of Karger’s algorithm and returning the best cut found. This intuition is valid;

in Karger’s original paper1, he outlines a recursive algorithm based on increasingly retrying later contraction

steps that runs even faster than Algorithm 1 to achieve any constant failure probability. While the “vanilla”

Karger’s algorithm outlined in these notes requires O(n2) runs of an O(n2) contraction process for an overall

complexity of O(n4), with relatively little effort this running time may be improved to O(n2 log2(n)).

We also note that in the proof of Theorem 1, we are computing the probability that a particular min-cut

survives the contraction process. We prove that for any cut of minimum size, there is at least a 2
n(n−1)

chance that it is produced by the contraction process. Considering the fact that this is true for all min-cuts,

we have the following corollary:

Corollary 1 The number of min-cuts in G is ≤ n(n− 1)/2.

By considering a cycle on n vertices, we see that this bound is tight. The proof technique of Theorem 1

may be extended even further to bound the number of near-minimum cuts of a graph. An α-min-cut is a

cut of size ≤ α · (size of the min-cut). Using a similar argument, we may show that the probability that any

α-min-cut survives the contraction process is ≥ n−2α. This implies the following bound:

Corollary 2 The number of α-min-cuts in G is ≤ n2α.

Finally, we note that we may adapt Karger’s algorithm to enumerate all of these min-cuts or near-min-cuts

of G with high probability. For example, if we run the contraction process given in these notes 2n2 log n

times, the probability that we miss any particular min-cut is ≤ 1/n4. So if we keep track of all of the

smallest cuts we see along the contraction process, the probability that we miss any min-cuts at all is

≤ n(n− 1)/2 · 1/n4 = O(1/n2). That is, increasing the run-time by a multiplicative factor of O(log n) allows

us to guarantee with high probability that we see all of the min-cuts.

1Karger D. and Stein C. A New Approach to the Minimum Cut Problem. http://www.columbia.edu/~cs2035/courses/

ieor6614.S09/Contraction.pdf (1996)

http://www.columbia.edu/~cs2035/courses/ieor6614.S09/Contraction.pdf
http://www.columbia.edu/~cs2035/courses/ieor6614.S09/Contraction.pdf

CME 305: Discrete Mathematics and Algorithms - Lecture 4 3

2 Network Reliability

One application of the above bounds on the number of min-cuts/near-min-cuts is to prove guarantees in

network reliability. Consider a graph G(V,E) and assume a one-time-step reliability model where each edge

e ∈ E fails, i.e. is removed from the graph, independently with probability p. What is Pr[FAIL(G)], where

FAIL(G) is the event that G becomes disconnected as a result of the edge failures?

Writing |V | = n, there are exactly N = 2n−1 − 1 cuts of G (this is the number of ways to partition V into

two non-empty subsets). G will become disconnected through edge removals iff for some cut, all edges that

cross the cut are removed. Define E1, ..., EN to be the sets of edges crossing each of the cuts of G, sorted so

that |E1| ≤ |E2| ≤ ... ≤ |EN |.

For each e ∈ E, we may define the random variable Xe such that

Xe =

{
1 if e fails

0 otherwise
.

Then

FAIL(G) = F = C1 ∨ C2 ∨ ... ∨ CN
where Ci =

∧
e∈Ei Xe. This expression for FAIL(G) is an example of a logical formula written in disjunctive

normal form (DNF): it is a formula consisting of the disjunction of one or more conjunctions of Boolean

variables.

2.1 Counting the Number of Solutions of a DNF

The network reliability question can then be reposed as a problem of counting the number of solutions of a

DNF . That is, how many of the 2m total assignments to X1, ..., Xm satisfy the formula F? Call this number

of satisfying assignments #F . Counting #F explicitly is difficult; for each clause Ci it is simple to compute

Si = {the set of assignments satisfying Ci}, we may even note that |Si| = 2m−|Ei|. We wish, however, to

know

#F = |S1 ∪ ... ∪ SN |
and the over-counting associated with having assignments belong to multiple Si’s is a source of much difficulty.

Indeed, the exact counting problem is #P-hard, but estimation schemes exist.

One workaround is to approximate #F using a Monte Carlo procedure. Define a random variable Z to be

computed by drawing a random assignment X for X1, ..., Xm, i.e. by drawing each Xi ∼ Bernoulli(1/2)

independently, and setting

Z =

{
0 if the formula F is not satisfied

2n otherwise
.

Then we have

E[Z] =
∑
X

Z(X)Pr(X)

=
∑

X satisfies F

2n
(

1

2n

)
.

= #F.

We might hope to estimate E[Z] by sampling k copies of Z and using the central limit theorem to claim:

E[Z] ≈ 1

k

k∑
i=1

Zi =
1

k

k∑
i=1

Z(Xi
1, ..., X

i
m),

4 CME 305: Discrete Mathematics and Algorithms - Lecture 4

but to achieve meaningful results this approach could require a very large number of trials k if the variance

of Z is large. This will be the case if there are few satisfying assignments for F .

Instead of the basic Monte Carlo procedure described above, we may use a standard variance reduction

technique called importance sampling to estimate #F . The idea is to sample random assignments for

X1, ..., Xm in a way that assigns nonzero probability to only the satisfying assignments of F ; then we

reweight our observations accordingly. Define the random variable Y by the following process:

• Choose a clause Ci with probability ∝ |Si| (i.e. with probability |Si|/M , where M =
∑N
i=1 |Si|).

• Choose τ ∈ Si uniformly at random.

• Compute C(τ) = the number of clauses satisfied by τ .

• Take Y = M
C(τ) .

Claim 1 E[Y] = #F .

Proof: The probability that we choose a particular satisfying assignment τ for computing Y is:

Pr(τ) =
∑

i:τ satisfies Ci

|Si|
M
· 1

|Si|
=
C(τ)

M
.

Then

E[Y] =
∑

τ satisfies F

Y (τ)Pr(τ)

=
∑

τ satisfies F

1

= #F.

The advantage of using Y is that we may bound its variance in comparison to its expectation. Noting that

Y only takes on values in the range [MN ,M], we may see that

σ(Y)

E[Y]
=

√
E[(Y − E[Y])2]

E[Y]
≤ M −M/N

M/N
= N − 1.

It turns out that we need only sample Y polynomially many times (in n and 1/ε for an accuracy parameter

ε) in order to estimate #F to a high degree of accuracy.

Claim 2 Let Yk denote the mean of k independent samples of Y . For any ε > 0,

Pr[|Yk −#F | ≤ ε#F] ≥ 3/4

for k = 4(N − 1)2/ε2.

Proof: We use Chebyshev’s inequality to write:

Pr[|Yk − E[Yk]| ≥ εE[Yk]] ≤
(
σ(Yk)

εE[Yk]

)2

=

(
σ(Y)

ε
√
kE[Y]

)2

≤ 1

4
.

CME 305: Discrete Mathematics and Algorithms - Lecture 4 5

Claim 2 is the basis for a fully polynomial randomized approximation scheme (FPRAS) for computing #F .

An FPRAS, in general, is an approximation algorithm A to a problem f that satisfies

Pr[|A(x)− f(x)| ≤ εf(x)] ≥ 3/4

for each problem instance x and error parameter ε > 0, and the running time of A is polynomial in |x| and

1/ε. We note that in order to increase the success probability for any FPRAS from 3/4 to (1 − δ), for any

δ > 0, we need only increase the running time by a multiplicative factor of O(log(1/δ)). We achieve this by

running the FPRAS O(log(1/δ)) times and outputting the median value.

To prove that this median achieves the desired error probability, we first describe the Chernoff bounds2 on

the tail distributions of sums of Bernoulli random variables. Let X1, ..., Xn be independent random variables

with Xi ∼ Bernoulli(pi). Let X =
∑n
i=1Xi, then we have E[X] = µ =

∑n
i=1 pi. Chernoff bounds allow us

to estimate the tail probabilities that X will deviate far from its mean.

Pr [X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
Pr [X < (1− δ)µ] < e−

µδ2

2

These inequalities are part of a larger class of bounds called concentration inequalities that provide estimates

on how a random variable deviates from some central value.

Now imagine runningA a total of k = 24 log(1/δ) times on some problem input x, obtaining outputs y1, ..., yk.

Let m be the median of these k values. Let Xi = 1{|yi − f(x)| ≤ εf(x)} be the indicator random variable

for the output of the i-th run being successful. Note that E[
∑k
i=1Xi] ≥ (3/4)k. Then

Pr (|m− f(x)| � εf(x)) ≤ Pr

(
k∑
i=1

Xi < k/2

)

≤ Pr

(
k∑
i=1

Xi <

(
1− 1

3

)
E

[
k∑
i=1

Xi

])

≤ exp

−E
[∑k

i=1Xi

]
(1/3)2

2


≤ exp

(
− (3/4)k

18

)
= δ.

where the second-to-last inequality makes use of a Chernoff bound.

2.2 Estimating the Probability that a DNF is Satisfied

Before returning to network reliability, we must address the issue that estimating the probability that a

DNF formula is satisfied (given a distribution D over assignments) is not quite the same as estimating the

number of solutions it has. This is because certain satisfying assignments may be more likely to occur than

others. However, we may adapt our counting FPRAS to get one for probability estimation. Let qi denote the

probability that clause Ci is satisfied, and set M =
∑N
i=1 qi. Define the random variable Y by this process

instead:

• Choose a clause Ci with probability qi/M .

2See http://en.wikipedia.org/wiki/Chernoff_bounds for proofs and more information on the following inequalities.

http://en.wikipedia.org/wiki/Chernoff_bounds

6 CME 305: Discrete Mathematics and Algorithms - Lecture 4

• Choose τ ∈ Si with probability PrD(τ)/qi.

• Compute C(τ) = the number of clauses satisfied by τ .

• Take Y = Q/C(τ).

Then E[Y] = PrD[F], our desired quantity; the proof that this random variable is indeed the basis of an

FPRAS is similar to that of Claims 1 and 2.

2.3 Application to Network Reliability Estimation

Recall: we wish to estimate the failure probability Pr(F) = Pr(C1∨C2∨ ...∨CN), where Ci = Xei1
∧ ...∧Xeiji

denotes the event that the graph becomes disconnected across a particular cut as a result of edge failures.

F , as it stands, is actually too large to straightforwardly apply the results of the previous sections. The

number of terms in the DNF is N = 2n−1−1 which is exponential in the size of G. We present an alternative

approach built around the following idea: only a polynomial number of “small” cuts are responsible for the

majority of the total failure probability Pr(F). This is because the failure probability Pr(Ci) for a cut is

p|Ei| where |Ei| is the number of edges crossing the cut; this probability decreases exponentially with cut

size.

For reasons that will become clear later, we consider now only the case where Pr(F) ≤ n−4. Separate the

cuts into two groups: the set of “small” cuts defined to be the set of α-min-cuts of G, and “large” cuts which

are all of the rest. We have the following bound on the failure probability of the large cuts:

Claim 3 Let c denote the size of a minimum cut of G. Then the failure probability of a min-cut is pc ≤
Pr(F) ≤ n−4. Let pc = n−(2+δ) where δ ≥ 2. For any α ≥ 1,

Pr(one of the “large” cuts fails) = Pr(some cut of capacity ≥ αc fails) ≤ n−αδ
(

1 +
2

δ

)

Proof: We note from Corollary 2 of Section 7 that the number of cuts of size βc is at most n2β . This implies

that |En2β | ≥ βc for any β > 1, i.e. |Ek| ≥ c log k/(2 log n). Let a be the index of the first large cut. Then

we may write using the union bound:

Pr(some cut of capacity ≥ αc fails) ≤
∑
i≥a

Pr(Ci)

≤
a+n2α∑
i=a

Pr(Ci) +
∑
i>n2α

Pr(Ci)

≤ n2αpαc +
∑
i>n2α

pc log i/(2 logn)

≤ n−αδ +

∫ ∞
n2α

k−(1+δ/2) dk

≤ n−αδ +
2

δ
n−αδ = n−αδ

(
1 +

2

δ

)

By taking α = 2− log(ε/2)
2 logn , the above claim and some algebraic manipulation allows us to say that

Pr(F) ≥ Pr(one of the “small” cuts fails) ≥ (1− ε)Pr(F).

CME 305: Discrete Mathematics and Algorithms - Lecture 4 7

Then using Karger’s min-cut algorithm we may enumerate the α-min-cuts of G in polynomial time and

construct a corresponding DNF formula F ′. This formula has at most n2α = O(n4/ε) clauses, and then

we may use the results of the previous sections to accurately estimate the probability that F ′ is satisfied

(i.e. Pr(one of the “small” cuts fails)) in polynomial time. Putting this all together gives an FPRAS for

estimating network reliability in the case that Pr(F) ≤ n−4.

If Pr(F) > n−4, we may resort to simple Monte Carlo sampling to estimate the failure probability. That

is, we may disconnect each edge of G with probability p and then check to see if G is disconnected. If we

repeat this experiment O(log n/(ε2Pr(F)) times and output the mean number of times G is disconnected, a

simple application of Chernoff bounds guarantees that the result lies in

[(1− ε)Pr(F), (1 + ε)Pr(F)]

with high probability.

	Global Min-Cut
	Network Reliability
	Counting the Number of Solutions of a DNF
	Estimating the Probability that a DNF is Satisfied
	Application to Network Reliability Estimation

