- 1. (Lovasz, Pelikan, and Vesztergombi 7.3.9) Prove that at least one of G and \overline{G} is connected. Here, \overline{G} is a graph on the vertices of G such that two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.
- 2. A vertex in G is *central* if its greatest distance from any other vertex is as small as possible. This distance is the *radius* of G.
 - (a) Prove that for every graph G

rad
$$G \leq \text{diam } G \leq 2 \text{ rad } G$$

- (b) Prove that a graph G of radius at most k and maximum degree at most $d \ge 3$ has fewer than $\frac{d}{d-2}(d-1)^k$ vertices.
- 3. An oriented incidence matrix B of a directed graph G(V, E) is a matrix with n = |V| rows and m = |E| columns with entry B_{ve} equal to 1 if edge e enters vertex v and -1 if it leaves vertex v. For an undirected graph, we will use an arbitrary orientation of the edges. Let $M = BB^T$. Note, that M (or Laplacian) is independent of the orientation of the edges. Prove that rank(M) = n w where w is the number of connected components of G.
- 4. A simple graph G(V, E) is called Hamiltonian if it contains a cycle which visits all nodes exactly once. Prove that if every vertex has degree at least |V|/2, then G is Hamiltonian.
- 5. Let G = (V, E) be a graph and $w : E \to R^+$ be an assignment of nonnegative weights to its edges. For $u, v \in V$ let f(u, v) denote the weight of a minimum u v cut in G.
 - (a) Let $u, v, w \in V$, and suppose $f(u, v) \leq f(u, w) \leq f(v, w)$. Show that f(u, v) = f(u, w), i.e., the two smaller numbers are equal.
 - (b) Show that among the $\binom{n}{2}$ values f(u,v), for all pairs $u,v\in V$, there are at most n-1 distinct values.
- 6. Let V be a finite set. A function $f: 2^V \to R$ is submodular iff for any $A, B \subseteq V$, we have

$$f(A \cap B) + f(A \cup B) \le f(A) + f(B)$$

Now consider a graph with nodes V. For any set of vertices $S \subseteq V$ let f(S) denote the number of edges e = (u, v) such that $u \in S$ and $v \in V - S$. Prove that f is submodular.

7. Let T be a spanning tree of a graph G with an edge cost function c. We say that T has the cycle property if for any edge $e' \notin T$, $c(e') \ge c(e)$ for all e in the cycle generated by adding e' to T. Also, T has the cut property if for any edge $e \in T$, $c(e) \le c(e')$ for all e' in the cut defined by e. Show that the following three statements are equivalent:

- (a) T has the cycle property.
- (b) T has the cut property.
- (c) T is a minimum cost spanning tree.

Remark 1: Note that removing $e \in T$ creates two trees with vertex sets V_1 and V_2 . A *cut* defined by $e \in T$ is the set of edges of G with one endpoint in V_1 and the other in V_2 (with the exception of e itself).

8. Given a sequence p_i of stock prices on n days, we need to find the best pair of days to buy and sell. i.e. find i and j that maximizes $p_j - p_i$ subject to $j \ge i$. Give an O(n) dynamic programming solution.