1. (Lovasz, Pelikan, and Vesztergombi 7.3.9) Prove that at least one of G and \bar{G} is connected. Here, \bar{G} is a graph on the vertices of G such that two vertices are adjacent in \bar{G} if and only if they are not adjacent in G.
2. A vertex in G is central if its greatest distance from any other vertex is as small as possible. This distance is the radius of G.
(a) Prove that for every graph G

$$
\operatorname{rad} G \leq \operatorname{diam} G \leq 2 \operatorname{rad} G
$$

(b) Prove that a graph G of radius at most k and maximum degree at most $d \geq 3$ has fewer than $\frac{d}{d-2}(d-1)^{k}$ vertices.
3. An oriented incidence matrix B of a directed graph $G(V, E)$ is a matrix with $n=|V|$ rows and $m=|E|$ columns with entry $B_{v e}$ equal to 1 if edge e enters vertex v and -1 if it leaves vertex v. For an undirected graph, we will use an arbitrary orientation of the edges. Let $M=B B^{T}$. Note, that M (or Laplacian) is independent of the orientation of the edges. Prove that $\operatorname{rank}(M)=n-w$ where w is the number of connected components of G.
4. A simple graph $G(V, E)$ is called Hamiltonian if it contains a cycle which visits all nodes exactly once. Prove that if every vertex has degree at least $|V| / 2$, then G is Hamiltonian.
5. Let $G=(V, E)$ be a graph and $w: E \rightarrow R^{+}$be an assignment of nonnegative weights to its edges. For $u, v \in V$ let $f(u, v)$ denote the weight of a minimum $u-v$ cut in G.
(a) Let $u, v, w \in V$, and suppose $f(u, v) \leq f(u, w) \leq f(v, w)$. Show that $f(u, v)=$ $f(u, w)$, i.e., the two smaller numbers are equal.
(b) Show that among the $\binom{n}{2}$ values $f(u, v)$, for all pairs $u, v \in V$, there are at most $n-1$ distinct values.
6. Let V be a finite set. A function $f: 2^{V} \rightarrow R$ is submodular iff for any $A, B \subseteq V$, we have

$$
f(A \cap B)+f(A \cup B) \leq f(A)+f(B)
$$

Now consider a graph with nodes V. For any set of vertices $S \subseteq V$ let $f(S)$ denote the number of edges $e=(u, v)$ such that $u \in S$ and $v \in V-S$. Prove that f is submodular.
7. Let T be a spanning tree of a graph G with an edge cost function c. We say that T has the cycle property if for any edge $e^{\prime} \notin T, c\left(e^{\prime}\right) \geq c(e)$ for all e in the cycle generated by adding e^{\prime} to T. Also, T has the cut property if for any edge $e \in T, c(e) \leq c\left(e^{\prime}\right)$ for all e^{\prime} in the cut defined by e. Show that the following three statements are equivalent:
(a) T has the cycle property.
(b) T has the cut property.
(c) T is a minimum cost spanning tree.

Remark 1: Note that removing $e \in T$ creates two trees with vertex sets V_{1} and V_{2}. A cut defined by $e \in T$ is the set of edges of G with one endpoint in V_{1} and the other in V_{2} (with the exception of e itself).
8. Given a sequence p_{i} of stock prices on n days, we need to find the best pair of days to buy and sell. i.e. find i and j that maximizes $p_{j}-p_{i}$ subject to $j \geq i$. Give an $O(n)$ dynamic programming solution.

