While analyzing the NodeIterator algorithm, we want to bound the following expression:

$$
\sum_{v \in V} \operatorname{deg}^{*}(v)^{2}
$$

Consider those nodes for which $\operatorname{deg}^{*}(v)<t$. Then for that partial sum we have:

$$
\begin{gathered}
\sum_{v \in V, \operatorname{deg}^{*}(v)<t} \operatorname{deg}^{*}(v)^{2} \leq \sum_{v \in V, \operatorname{deg}^{*}(v)<t} t \operatorname{deg}^{*}(v)= \\
=t \sum_{v \in V, \operatorname{deg}^{*}(v)<t} \operatorname{deg}^{*}(v) \leq 2 m t
\end{gathered}
$$

Now consider those nodes for which $\operatorname{deg}^{*}(v) \geq t$. There are at most $2 m / t$ such nodes. Note that $\sum_{v \in V, \operatorname{deg}^{*}(v) \geq t} \operatorname{deg}^{*}(v)^{2}$ is upper bounded by the number of triangles between high-degree nodes, and since there are at most $2 \mathrm{~m} / \mathrm{t}$ such nodes, we have

$$
\sum_{v \in V, \operatorname{deg}^{*}(v) \geq t} \operatorname{deg}^{*}(v)^{2} \leq(2 m / t)^{3}
$$

The total sum is bounded by the sum of the two partial sums we analyzed:

$$
\sum_{v \in V} \operatorname{deg}^{*}(v)^{2} \leq(2 m / t)^{3}+2 m t
$$

We can set $t=\sqrt{m}$ to minimize the above expression. Doing so, it becomes bounded by $O\left(m^{3 / 2}\right)$

