
CME 305: Discrete Mathematics and Algorithms

1 Graph Sparsfication

In this section we discuss the approximation of a graph G(V,E) by a sparse graph H(V, F ) on the same

vertex set. In particular, we consider any graph with |E| = Ω(n1+δ) edges to be dense; we wish to find

sparse representations with |F | = O(n) edges that have proportionally the same number of edges crossing

any cut. That is, if we scale the values of every edge in the sparse graph by |E|/|F |, the value of each cut

will remain (approximately) the same.

A common application of graph sparsification is internet traffic routing. Consider building a undirected

network N on n nodes, and suppose we would like to route 1 unit of flow (directionless) between each pair of

nodes in N under some capacity constraints on the edges. A complete graph Kn with c(e) = 1 ∀ e ∈ E would

suffice, but for practical purposes it is undesirable to use so many (O(n2)) edges. If we require the number

of edges to be linear in n, we might consider a star graph and scale up the capacities on the edges to n− 1.

The drawback in this case is that there is a single node of degree n− 1 which has too much (O(n2)) traffic

flowing through it – if this node were to fail it would bring down the entire network. A reasonable goal,

then, is to produce a graph on n vertices and O(n) edges that maintains the connectivity of the complete

graph while also having approximately uniform vertex degree.

The expansion ρ(G) of an undirected graph G(V,E) is defined as the minimum cut value weighted by the

size of the smaller cut partition:

ρ(G) = min
S⊆V

c(S, S̄)

min(|S|, |S̄|)
= min
S⊆V,|S|≤n2

c(S, S̄)

|S|
.

Taking all edge-values to be 1, our goal from above is equivalent to finding an approximately regular graph

G with O(n) edges and ρ(G) = Ω(1). For comparison, note that the complete graph has O(n2) edges and

achieves ρ(Kn) = n/2. We give two methods of constructing such G.

1.1 Erdős-Rényi Random Graphs

The Erdős-Rényi G(n, p) model for constructing random graphs denotes a graph on n vertices where each of

the n(n−1)/2 possible edges are included in the edge set independently with probability p. To get m = O(n),

we may choose p = c/n for some constant c > 0, then we may compute

E[m] =
c(n− 1)

2
,

E[d(v)] = c

(
n− 1

n

)
∀ v ∈ V.

The following claim shows that we may sample from an Erdős-Rényi graph distribution and obtain a suitable

G with high probability.

Claim 1 If we choose p = logn
nε2 , then G(n, p) will have O(n logn

nε2 ) edges and with high probability, the size of

every cut in G will be within (1± ε) of its expected value, so ρ(G) = Ω(1).

1.2 Random d-Regular Graphs

Recall that a d-regular graph is one in which all vertices have the same degree d.

Theorem 1 For all d ≥ 3, there exists a constant α > 0 such that with high probability, a random d-regular

graph G has expansion ρ(G) ≥ α.
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Proof: (To simplify the calculations, we present the proof for d sufficiently large instead of d ≥ 3. The proof

for d = 3 is similar.)

First we note that we can generate d-regular graphs on n vertices via the configuration model: we split

each vertex into d mini-vertices, and find the edges by generating a random perfect matching on the mini-

vertices. Then when we combine each vertex’s mini-vertices, every vertex will have degree d. Note that a

graph produced in this way may have multiple edges or self-loops.

To prove the theorem we need to show that for each set S ⊂ V , |S| = k, the probability that |c(S, S̄)| < αk

is sufficiently small. Assume that there exists such an S of size k. For a given k, there are
(
n
k

)
possible

choices for S. For a given S, there are
(
dk
αk

)(
dn−dk
αk

)
ways to choose the minivertices in S and minivertices in

S̄ involved in a cut of size αk.

Let us start by calculating the number of d regular graphs on n vertices, i.e., the number of perfect matchings

of Kdn.

f(nd) =

(
nd

2

)(
nd− 2

2

)
. . .

(
2

2

)
1

(nd/2)!

=
(nd)!

2nd/2(nd/2)!
.

We will use the following Stirling approximation for factorials:

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
.

So

f(nd) = c(nd)nd/2e−nd/2
(

1 +O

(
1

n

))
,

for some constant c. Then the probability of the event that only a certain αk of minivertices match outside

of their proper subset is at most

f(dk − αk)f(dn− dk − αk)f(2αk)

f(dn)
.

Therefore, the probability Pk that there is a subset S, with |S| = k and expansion less than α may be

bounded as

Pk ≤ αk
(
n

k

)(
dk

αk

)(
dn− dk
αk

)
f(dk − αk)f(dn− dk − αk)f(2αk)

f(dn)
.

Using the simple but useful inequality, (n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
we have

Pk ≤ cαk
(en
k

)k ( edn
2αk

)2αk
(dk − αk)

dk−αk
2 (dn− dk − αk)(dn−dk−αk)/2(2αk)αk

(nd)nd/2

≤ cαkek
(
ed

2α

)2αk (n
k

)k+2αk
(
k

n

)(dk−αk)/2

≤ cαk

(
e

(
ed

2α

)2α
)k (

k

n

)((d−2)k−5αk)/2

≤ cαk(ce)k(k/n)3k
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for d ≥ 15, α < 1/100. Therefore,
n/2∑
k=1

Pk = O(1/n2)

2 The Probabilistic Method

Theorem 1 gives an affirmative answer to the question of whether there exists a graph with m = O(n) edges

and expansion ρ(G) = Ω(1). It is interesting to note, however, that the proof is non-constructive. We only

give a distribution of graphs from which a random sampled instance is likely to have the properties we want.

This simple idea is the premise of a combinatorial analysis technique known as the probabilistic method : in

order to prove the existence of a structure, we merely need to show that there is a positive probability that

the structure exists.

2.1 A Simple Example: Monochromatic Coloring

We let S1, . . . , Sm be subsets of a larger set S such that each subset Si contains exactly l elements from

S. Is it possible to color the elements of S with two colors — say, red and blue — such that no set Si is

monochromatic?

Lemma 1 If the number of subsets m < 2l−1, then such a coloring is always possible

Proof: We use the probabilistic method. Toss a coin for each vertex and color the vertex red if the coin

lands heads, blue for tails, so the probability that a vertex is red is 1/2, independent of the color of any other

vertex. Then the probability that a given set Si is entirely red or entirely blue is 2−l, so the probability

pimono that a Si is monochromatic is pimono = 2 · 2−l = 2−l+1.

Recall from basic probability the “union bound” or “subadditivity property” of probabilities. That is, for

any (arbitrary, not necessarily disjoint) events E1, E2, . . . , Ej ,

Pr(∪ji=1Ei) ≤
j∑
i=1

Pr(Ei).

Using the union bound, the probability pmono that some set is monochromatic obeys

pmono ≤
m∑
i=1

pimono =

m∑
i=1

2−l+1 = m · 2−l+1 < 1

for m < 2l−1.

Therefore there is a positive probability that no set is monochromatic, and so there must exist some assign-

ment of colors to vertices such that no set is monochromatic.

Note again that this proof is nonconstructive. We’ve created a distribution over all possible color assignments

(namely, the uniform distribution) and used this to show a positive probability that a graph with the desired

property exists. By explicitly giving a distribution over the space of all possible colorings, we turn an

exhaustive search algorithm into a simple probability calculation.
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2.2 Chromatic Number of a Graph

A proper vertex k-coloring of a graph G(V,E) is an assignment of k colors to vertices such that no two

vertices of the same color share an edge. The chromatic number χ(G) is equal to the smallest number of

colors needed to have a proper vertex coloring.

Chromatic number might appear to be based mostly on the local structure of a graph. For example, it is

simple to see that if a graph G contains Kk as a subgraph, then χ(G) ≥ k. In general, very tightly connected

subregions of graphs need many colors for proper coloring. A reasonable question to ask is whether there

exist graphs with high chromatic number that do not have any particularly dense subregions; their global

structure is what makes them require many colors.

As a measure of local connectivity, we define the girth of a graph G, g(G), to be the length of the smallest

cycle in G. If g(G) > 3, we say that G is triangle-free.

In 1954, B. Descartes was the first to show that triangle-free graphs can have arbitrarily high chromatic

numbers, but this construction was complicated and contained many short cycles. In 1959, Paul Erdős used

the probabilistic method to prove the existence of graphs with arbitrarily high girth and chromatic number.

Theorem 2 (Erdős, 1959) For every g, k > 0, there exists a graph G with χ(G) ≥ k and g(G) ≥ g.

Proof: An independent set in a graph G is U ⊂ V such that no two vertices in U are connected by an

edge. If a graph has chromatic number k, then there must exist at least one independent set of size at least
n
k , since each color in a proper coloring corresponds to an independent set.

We consider Erdős-Rényi random graphs G(n, p). In order to show that χ(G) ≥ k, it suffices to prove that

with high probability the size of any independent set in G is at most n
k . We will prove that with high

probability for a suitable selection of p, the graph doesn’t have any independent set of size n
2k .

We use the union bound. The probability that any set of n/2k vertices is an independent set is (1− p)(
n/2k

2 ).

There are
(

n
n/2k

)
possibilities for vertex sets of size n/2k. By the union bound, the probability of G(n, p)

having such an independent set is therefore at most

Pr
[
Gn,p has an independent set of size

n

2k

]
≤

(
n

n/2k

)
(1− p)(

n/2k
2 )

≤ 2ne−pn
2/8k

≤ elog 2n−pn2/8k

≤ en log 2−nε+1/8k.

where we set p = nε−1 for some ε < 1/g. The above expression tends to zero as n → ∞, so is therefore

smaller than 1/4 for n sufficiently large.

Let X be the random variable counting the number of cycles of length g and smaller. By linearity of

expectation,

E[X] =

g∑
i=1

(
n

i

)
(i− 1)!

2
pi

≤ g(np)g = gnεg.

For 0 < ε < 1/g, the above expression is o(n). Thus, for sufficiently large n, E(X) < n/4. By Markov’s

inequality,

Pr(X > n/2) ≤ Pr(X > 2E(X)) < 1/2.
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Therefore, if we choose n sufficiently large, and p = nε−1 for 0 < ε < 1/g, the probability that G(n, p) has

a independent set of size n
2k or that the number of cycles of length at most g is n

2 is less than 1 by the

union bound. Considering the complement of that event, we see that there must exist a graph G with no

independent set of size n
2k and with at most n

2 cycles of length at most g.

Now, we can construct a graph G′ by removing a vertex from each short cycle of G. The number of vertices

in G′ is at least n
2 , the size of the maximum independent set in G′ is no more that n

2k , and there are no

cycles of length less than g. This implies that χ(G′) > k and g(G′) > g.
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