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Abstract The training of two-layer neural networks with nonlinear activation
functions is an important non-convex optimization problem with numerous ap-
plications and promising performance in layerwise deep learning. In this paper,
we develop exact convex optimization formulations for two-layer neural net-
works with second degree polynomial activations based on dual relaxations
and semidefinite programming. Remarkably, we show that our semidefinite re-
laxations are always tight. Therefore, the computational complexity for global
optimization is polynomial in the input dimension and sample size for all in-
put data. The developed convex formulations are proven to achieve the same
globally optimal solution set as their non-convex counterparts. Specifically,
globally optimal two-layer neural networks with degree-two polynomial acti-
vations can be found by solving a semidefinite program (SDP) and decompos-
ing the solution using a procedure we call Neural Decomposition. Moreover,
the choice of regularizers plays a crucial role in the computational tractability
of neural network training. We show that the standard weight decay regular-
ization formulation is NP-hard, whereas other simple convex penalties render
the problem tractable in polynomial time via convex programming. The tech-
niques go beyond the fully connected architecture to encompass various neu-
ral network structures including those with vector outputs and convolutional
architectures. We provide extensive numerical simulations showing that the
standard backpropagation approach often fails to achieve the global optimum
of the training loss. The proposed approach is significantly faster to obtain
better test accuracy compared to the standard backpropagation procedure. 1
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1 Introduction

We study neural networks from the optimization perspective by deriving equiv-
alent convex optimization formulations with identical global optimal solution
sets. The derived convex problems have important theoretical and practical
implications for the computational complexity of optimal neural network train-
ing. Moreover, the convex optimization perspective provides a more concise
parameterization of neural networks and reveal novel insights.

In non-convex optimization, the choice of optimization method and its in-
ternal hyperparameters, such as initialization, mini-batching and step sizes,
have a considerable effect on the quality of the learned model. This is in sharp
contrast to convex optimization problems, where locally optimal solutions are
globally optimal and optimizer parameters have no influence on the solution
and therefore the model. Moreover, the solutions of convex optimization prob-
lems can be obtained in a very robust, efficient and reproducible manner thanks
to the elegant and extensively studied structure of convex programs. There-
fore, our convex optimization based globally optimal training procedure en-
ables the study of the neural network model and the optimization procedure
in a decoupled way. For instance, step sizes employed in the optimization can
be considered hyperparameters of non-convex models, which affect the model
quality and may require extensive tuning. For a classification task, in our con-
vex optimization formulation, step sizes as well as the choice of the optimizers
are no longer hyperparameters to obtain better classification accuracy. Any
convex optimization solver can be leveraged to solve the convex problem to
obtain a globally optimal model.

Various nonlinearities have been proposed in the literature as activation
functions. Among the most widely adopted ones is the ReLU (rectified linear
unit) activation given by σ(u) = max(0, u). A recently proposed alternative
is the swish activation σ(u) = u(1 + e−u)−1, which performs comparably well
[40]. Another important class is the polynomial activation where the activation
function is a scalar polynomial of a fixed degree. We focus on second degree
polynomial activation functions, i.e., σ(u) = au2+bu+c. Although polynomial
coefficients a, b, c can be regarded as hyperparameters, it is often sufficient to
select them to approximate a target nonlinear activation function such as the
ReLU or swish activation. ReLU and swish activations are plotted in Figure
1 along with their second degree polynomial approximations.

Our derivation of the convex program for degree-two polynomial activa-
tions leverages convex duality and the S-procedure, and results in a simple
semidefinite program (SDP). We refer the reader to [39] for a survey of the
S-procedure and applications in SDPs.
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Fig. 1 ReLU (left) and swish (right) activation functions and their second degree polyno-
mial approximations. ReLU activation: σ(u) = max(0, u) and its polynomial approximation:
σ(u) = 0.09u2 +0.5u+0.47. Swish activation: σ(u) = u(1 + e−u)−1 and its polynomial ap-
proximation: σ(u) = 0.1u2 + 0.5u+ 0.24.

Main aspects of our work that differ from others in the literature that study
the optimization landscape of two-layer neural networks (e.g. see prior work
section) are the following: Our results (1) provide global optimal solutions
in polynomial time, (2) uncover an important role of the regularizer in com-
putational tractability, (3) hold for arbitrary convex loss functions and other
network architectures such as vector output, convolutional and pooling, (4)
are independent of the choice of the numerical optimizer and its parameters.

1.1 Overview of Our Contributions

– We show that the standard optimization formulation for training neu-
ral networks fθ(x) =

∑m
j=1 σ(x

Tuj)αj with trainable parameters θ =

(u1, . . . , um, α1, . . . , αm), degree-two polynomial activations σ(u) = au2 +
bu+ c, training data X = [x1, . . . , xn]

T ∈ Rn×d, y ∈ Rn and weight decay
(WD) regularization given by

(PWD) min
uj∈Rd,

αj∈R,∀j∈[m]

ℓ
( m∑

j=1

σ(Xuj)αj , y
)
+ β

m∑
j=1

(∥uj∥22 + α2
j ) (1)

is computationally intractable via reduction from the NP-hard subset sum
problem for all values of m. The loss function ℓ(ŷ, y) is a function of the
network output ŷ ∈ Rn. The hardness result is valid for any loss function
that satisfies argminŷ∈Rn ℓ(ŷ, y) = y.

– Surprisingly, for square activation, i.e., σ(u) = u2, we show that modifying
the quadratic weight decay regularization to cubic regularization

(PSQ) min
uj∈Rd,

αj∈R, ∀j∈[m]

ℓ
( m∑

j=1

σ(Xuj)αj , y
)
+ β

m∑
j=1

(∥uj∥32 + |αj |3) (2)

enables global optimization in polynomial time via convex semidefinite
programming when the number of neurons m is above a threshold m∗.
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The threshold m∗ is proportional to the rank of the solution of the con-
vex semidefinite program. An exact expression is provided in the sequel.
The computational complexity is polynomial in all problem parameters
(n, d,m). The result holds for any convex and closed function ℓ(ŷ, y); a
standard example is the squared loss ℓ(ŷ, y) = ∥ŷ − y∥22.

– Furthermore, for any degree-two polynomial activation σ, the non-convex
neural network training problem

(P ) min
uj∈Rd,αj∈R, ∀j∈[m]

ℓ
( m∑

j=1

σ(Xuj)αj , y
)
+ β

m∑
j=1

|αj |

s.t. ∥uj∥2 = 1 ,∀j ∈ [m] (3)

can be equivalently stated as a convex semidefinite problem and solved in
polynomial time. In fact, the cubic regularization strategy in (2) is a special
case of this convex program. The result holds universally for all input data
without any conditions and also holds when β → 0.

– In deriving the convex formulations, we identify a concise re-parameterization
of the neural network parameters that enables exact convexification by re-
moving the redundancy in their classical formulation. This is similar in
spirit to the semidefinite lifting procedure in relaxations of combinato-
rial optimization problems. In contrast to these relaxations, we show that
our lifting is always exact as soon as the network width exceeds a critical
threshold which can be efficiently determined.

– We develop a matrix decomposition procedure called Neural Decomposi-
tion to extract the optimal network parameters from the solution of our
convex program, which is guaranteed to produce an optimal neural net-
work. Neural Decomposition transforms the convex re-parameterization to
the overparameterized, i.e., redundant, formulation in a similar spirit to (a
non-orthogonal version of) Eigenvalue Decomposition.

– In addition to the fully connected architecture, we derive equivalent convex
programs for other architectures such as convolutional, pooling and vector
output architectures (see the supplementary material [4] for details).

– We provide extensive numerical simulations showing that the standard
backpropagation approach fails to achieve the global optimum of the train-
ing loss. Moreover, the test accuracy of the proposed convex optimization is
considerably higher in standard datasets as well as random planted models.
Our convex optimization solver is significantly faster in total computation
time to achieve similar or better test accuracy.

1.2 Prior Work

A considerable fraction of recent works on the analysis of optimization land-
scape of neural networks focuses on explaining why gradient descent performs
well. The works [12,44] consider the optimization landscape of a restricted
class of neural networks with square activation and quadratic regularization
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where the second layer weights are fixed. They show that when the neural
network is overparameterized, i.e., m ≥ d, the non-convex loss function has
benign properties: all local minima are global and all saddle points have a
direction of negative curvature. However, in this paper we show that train-
ing both the first and second layer weights with quadratic regularization in
fact makes global optimization NP-hard for any value of m. In contrast, we
provide a different formulation to obtain the global optimal solution via con-
vex optimization in the more general case when the second layer weights are
also optimized, the activation function is any arbitrary degree-two polynomial,
and global optimum is achieved for all values of m. The work in [30] similarly
studies two-layer neural networks with square activation function and squared
loss and states results on both optimization and generalization properties. The
authors in [17] focus on square activation networks from the perspectives of
optimization landscape and generalization performance, where the setting is
based on a planted model with a full rank weight matrix. In [25,28] it was
shown that sufficiently wide ReLU networks have a benign landscape when
each layer is sufficiently wide, satisfying m ≥ n+ 1.

Another recent work analyzing the training of neural networks with quadratic-
like activations for deeper architectures is [2]. Authors in [2] consider degree-
two polynomial activation functions and investigate layerwise training and
compare with end-to-end training of layers. It is demonstrated in [2] that the
degree-two polynomial activation function performs comparably to ReLU ac-
tivation in deep networks. More specifically, it is reported in [2] that for deep
neural networks, ReLU activation achieves a classification accuracy of 0.96 and
a degree-two polynomial activation yields an accuracy of 0.95 on the Cifar-10
dataset. Similarly for the Cifar-100 dataset, they obtain an accuracy of 0.81
for ReLU activation and 0.76 for the degree-two polynomial activation. These
numerical results are obtained for the activation σ(u) = u + 0.1u2, which
the authors prefer over the square activation σ(u) = u2 to make the neural
network training stable. Moreover, the performance of layerwise learning with
such activation functions is considerably high, although there is a gap between
end-to-end trained models. In addition, neural networks with polynomial ac-
tivations have immediate applications in encrypted computing [22,18,31,34].
In encrypted computing, it is desirable to have a low degree polynomial as the
activation function. For instance, homomorphic encryption can only support
additions and multiplications in a straightforward way, which necessitates low
degree polynomials as activations. In [18], degree-two polynomial approxima-
tions were shown to be effective for accurate neural network predictions with
encryption.

In a recent series of papers, the authors derived convex formulations for
training ReLU neural networks to global optimality [38,14,15,13,41,42]. Our
work takes a similar convex duality approach in deriving the convex equiva-
lents of non-convex neural network training problems. In particular, the pre-
vious work in this area deals with ReLU activations while in this work we
focus on degree-two polynomial activations. Hence, the techniques involved in
deriving the convex programs and the resulting convex programs are substan-
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tially different. The convex program derived for ReLU activation in [38] has
polynomial time trainability for fixed rank data matrices, whereas the convex
programs developed in this work are polynomial time trainable with respect
to all problem dimensions. More specifically, the convex program in [38] is

min
vi,wi∈Rd,∀i∈[H]

ℓ

( H∑
i=1

DiX(vi − wi), y

)
+ β

H∑
i=1

(∥vi∥2 + ∥wi∥2)

s.t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0,∀i ∈ [H] , (4)

where the neural network weights are constructed from vi ∈ Rd and wi ∈ Rd,
i = 1, . . . ,H. The matrices Di are diagonal matrices whose diagonal entries
consist of 1xT

1 u≥0, 1xT
2 u≥0, . . . , 1xT

nu≥0 for all possible u ∈ Rd. The number
of distinct Di matrices, denoted by H is the number of hyperplane arrange-
ments corresponding to the data matrix X. It is known that H is bounded

by 2r
(

e(n−1)
r

)r
where r = rank(X) (see [38] for the details). In particular,

convolutional neural networks have a fixed value of r, for instance m filters
of size 3× 3 yield r = 9. This is an exponential improvement over previously
known methods that train optimal ReLU networks which are exponential in
the number of neurons m and/or the number of samples n [3,19,6].

The work in [7] presents formulations for convex factorization machines
with nuclear norm regularization, which is known to obtain low rank solutions.
Vector output extension for factorization machines and polynomial networks,
which are different from polynomial activation networks, is developed in [8].
Polynomial networks are equivalent to square activation networks with an
addition of a linear neuron. In [8], the authors consider learning an infinitely
wide square activation layer by a greedy algorithm. The proposed method in
[8] does not provide optimal finite width networks. Furthermore, [29] presents a
greedy algorithm for training polynomial networks. The algorithm provided in
[29] is based on gradually adding neurons to the neural network to reduce the
loss. More recently, [43] considers applying lifting for square activation neural
networks and presents non-convex algorithms for low rank matrix estimation
for two-layer neural network training.

1.3 Notation

Throughout the text, σ : R→ R denotes the activation function of the hidden
layer. We refer to the function σ(u) = u2 as square activation and σ(u) =
au2 + bu + c where a, b, c ∈ R as degree-two polynomial activation. We use
X ∈ Rn×d to denote the data matrix, where its rows xi ∈ Rd correspond to
data samples and columns are the features. In the text, whenever we have a
function mapping from R to R with a vector argument (e.g., σ(v) or v2 where v
is a vector), this means the elementwise application of that function to all the
components of the vector v. We denote a column vector of ones by 1̄ and its
dimension can be understood from the context. vec(·) denotes the vectorized
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version of its argument. In writing optimization problems, we use min and
max to refer to “minimize” and “maximize”. We use the notations [m] and
1, . . . ,m interchangeably.

We use ℓ(ŷ, y) for convex loss functions throughout the text. The notation
ℓ∗(v) = supz(v

T z − ℓ(z, y)) denotes the Fenchel conjugate of the function
ℓ(·, y). Furthermore, we assume ℓ∗∗ = ℓ which holds when ℓ is a convex and
closed function [9]. We use Z ⪰ 0 for positive semidefinite matrices (PSD).
Sd×d refers to the set of d × d dimensional symmetric matrices. tr refers to
matrix trace. ⊗ is used for outer product. The operator conv stands for the
convex hull of a set.

1.4 Preliminaries on Semidefinite Lifting

We defer the discussion of semidefinite lifting for two-layer neural networks to
next section. We now briefly discuss a class of problems where SDP relaxations
lead to exact convex optimization solutions of the original non-convex problem
and also instances where they fail to be exact. Let us consider a quadratic
objective problem with a single quadratic constraint:

min
u∈Rd

uTQ1u+ bT1 u+ c1

s.t. uTQ2u+ bT2 u+ c2 ≤ 0 (5)

where Q1, Q2 ∈ Rd×d are indefinite, i.e., not assumed to be positive semidef-
inite and b1, b2 ∈ Rd, c1, c2 ∈ R. Due to the indefinite quadratics, this is a
non-convex optimization problem. By introducing a matrix variable U = uuT ,
one can equivalently state this problem as

min
U∈Rd×d

u∈Rd

tr(Q1U) + bT1 u+ c1

s.t. tr(Q2U) + bT2 u+ c2 ≤ 0

U = uuT . (6)

This problem can be relaxed by replacing the equality by the matrix inequality
U ⪰ uuT . Re-writing the expression U ⪰ uuT as a linear matrix inequality via
the Schur complement formula yields the following SDP

min
U∈Rd×d

u∈Rd

tr(Q1U) + bT1 u+ c1

s.t. tr(Q2U) + bT2 u+ c2 ≤ 0[
1 uT

u U

]
⪰ 0 . (7)

Remarkably, it can be shown that the original non-convex problem in (5) can
be solved exactly by solving the convex SDP in (7) via duality, under the
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mild assumption that the original problem is strictly feasible (see [9]). This
shows that the SDP relaxation is exact in this problem, returning a globally
optimal solution when one exists. We note that there are alternative numerical
procedures to compute the global optimum of quadratic programs with one
quadratic constraint [9].

As an alternative to the lifting based primal approach, it is possible to
obtain the same convex SDP formulation via Lagrangian duality. First, we
note that the dual of the original non-convex problem in (5) is the SDP

max
γ,λ∈R

1

4
γ + c2λ+ c1

s.t.

[
Q1 + λQ2 b1 + λb2
(b1 + λb2)

T −γ

]
⪰ 0

λ ≥ 0 . (8)

Taking the dual of this SDP, we obtain the bidual of (5), which gives us the
same SDP relaxation in (7).

We also note that the lifting approach U = uuT followed by the relaxation
U ⪰ uuT is not tight for quadratic programs with more than two quadratic
constraints [33,10]. A notable case with multiple constraints is the NP-hard
Max-Cut problem and its SDP relaxation [20]

max
u∈Rd

u2
i=1,∀i∈[d]

uTQu = max
u∈Rd

u2
i=1,∀i∈[d]

tr(QuuT ) ≤ max
U∈Rd×d,U⪰0
Uii=1,∀i∈[d]

tr(QU). (9)

The SDP relaxation of Max-Cut is not tight in general since its feasible set
contains the cut polytope

conv
{
uuT : ui ∈ {−1,+1} ∀i

}
and other non-integral extreme points [26]. Nevertheless, an approximation ra-
tio of 0.878 can be obtained via the Goemans-Williamson randomized rounding
procedure under certain restrictions on Q [20]. It is conjectured that this is
the best approximation ratio for Max-Cut [23], whereas it can be formally
proven to be NP-hard to approximate within a factor of 16

17 [21,45]. Hence, in
general we cannot expect to obtain exact solutions to problems of combina-
torial nature, such as Max-Cut and variants using computationally efficient
SDP relaxations.

It is instructive to note that a naive application of the SDP lifting strat-
egy is not immediately tractable for two-layer neural networks. For simplicity,
consider a scalar output degree-two polynomial activation network f(x) =∑m

j=1 σ(x
Tuj)αj where σ(u) = u2 + u, and {uj , αj}mj=1 are trainable parame-

ters. The corresponding training problem for a given loss function ℓ(·, y) and
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its SDP relaxation are as follows

min
uj∈Rd,

αj∈R, ∀j∈[m]

∑
x,y

ℓ
( m∑
j=1

((xTuj)
2 + xTuj)αj , y

)
≥

min
uj∈Rd,αj∈R,Uj∈Rd×d,

Uj⪰uju
T
j ,∀j∈[m]

∑
x,y

ℓ
( m∑
j=1

xTUjxαj + xTujαj , y
)
. (10)

The above problem is non-convex due to the bilinear terms {Ujαj}mj=1. More-

over, a variable change Ûj = Ujαj does not respect semidefinite constraints
Uj ⪰ ujuTj when αj ∈ R. Another limitation is the prohibitively high number

of variables in the lifted space, which is d2m+ dm+m as opposed to dm+m
in the original problem. Therefore, a different convex analytic formulation is
needed to address all these problems.

Although SDP relaxations are extensively studied for various non-convex
problems (see e.g. [46] for a survey of applications), instances with exact SDP
relaxations are exceptionally rare. As will be discussed in the sequel, our main
result for two-layer neural networks is another instance of an SDP relaxation
leading to exact formulations where the semidefinite relaxation is tight.

In convex geometry, a spectrahedron is a convex body that can be repre-
sented as a linear matrix inequality which are the feasible sets of semidefinite
programs. An example is the elliptope defined as the feasible set of the Max-
Cut relaxation given by U ⪰ 0, Uii = 1∀i, which is a subset of n×n symmetric
positive-definite matrices. Due to the existence of efficient projection operators
and barrier functions of linear matrix inequalities, optimizing convex objec-
tives over spectrahedra can be efficiently implemented, which renders SDPs
tractable. We will show that degree-two polynomial activation networks can be
represented via a class of linear matrix inequalities, dubbed neural spectrahedra
(see Figure 2 for an example), which enables global optimization in polynomial
time and elucidates their parameterization in convex analytic terms.

1.5 Paper Organization

The paper is structured as follows. Section 2 gives an overview of the theory
developed in this work. Section 3 describes the convex optimization formula-
tion via duality and S-procedure for degree-two polynomial activation neural
networks. Section 4 establishes via the neural decomposition method that the
convex problem developed in Section 3 can be used to train two-layer neu-
ral networks to global optimality. The hardness result for the weight decay
regularization is studied in Section 5. We discuss the implementation details
for solving the convex programs and give experimental results in Section 6.
Omitted proofs can be found in the appendix. The supplementary material
[4] has sections on the special case of square activation neural networks with
cubic regularization, and on vector output and convolutional architectures, as
well as additional numerical results.
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Table 1 List of the neural network architectures considered in this work and the corre-
sponding convex programs. Abbreviations are as follows. Poly (scalar): Degree-two poly-
nomial activation scalar output, Poly (vector): Degree-two polynomial activation vector
output, Convolutional: Convolutional neural network (CNN) with degree-two polynomial
activation, Pooling: CNN with degree-two polynomial activation and average pooling, Quad
(scalar, cubic reg): Square activation scalar output with cubic regularization, Quad (scalar,
quad reg): Square activation scalar output with quadratic regularization. K is the number of
patches and f is the filter size for the convolutional architecture. C is the output dimension
for the vector output case. P is the pool size for average pooling. σ(u) is defined as u2 for
square activation, and au2 + bu+ c for degree-two polynomial activation.

Non-convex objective Convex Upper bound on
formulation critical width m∗

Poly (scalar) ℓ
(∑m

j=1 σ(Xuj)αj , y
)
+ β

∑m
j=1 |αj | s.t. ∥uj∥ = 1 (21) 2(d+ 1)

Poly (vector) ℓ
(∑m

j=1 σ(Xuj)α
T
j , Y

)
+ β

∑m
j=1 ∥αj∥1 s.t. ∥uj∥ = 1 Supp. Mat. [4] 2(d+ 1)C

CNN ℓ
(∑m

j=1

∑K
k=1 σ(Xkuj)αjk, y

)
+ β

∑m
j=1 ∥αj∥1 s.t. ∥uj∥ = 1 Supp. Mat. [4] 2(f + 1)K2

Pooling ℓ
(∑m

j=1

∑K/P
k=1

1
P

∑P
l=1 σ(X(k−1)P+luj)αjk, y

)
+ β

∑m
j=1 ∥αj∥1 Supp. Mat. [4] 2(f + 1)K

2

P2

s.t. ∥uj∥ = 1

Quad (scalar, ℓ
(∑m

j=1 σ(Xuj)αj , y
)
+ β

∑m
j=1 |αj | s.t. ∥uj∥ = 1, or Supp. Mat. [4] d

cubic reg) ℓ
(∑m

j=1 σ(Xuj)αj , y
)
+ β

c

∑m
j=1(|αj |3 + ∥uj∥32)

Quad (scalar, ℓ
(∑m

j=1 σ(Xuj)αj , y
)
+ β

∑m
j=1 |αj |2/3 s.t. ∥uj∥ = 1, or NP-hard -

quad reg) ℓ
(∑m

j=1 σ(Xuj)αj , y
)
+ β

c

∑m
j=1(|αj |2 + ∥uj∥22) (intractable)

We summarize the types of neural network architectures considered in this
work and the corresponding convex problems in Table 1. The fourth column
of Table 1 shows the upper bounds for critical width m∗, i.e., the optimal
number of neurons that one needs for global optimization of any problems
with number of neurons m ≥ m∗.

2 Lifted Representations of Networks with Degree-Two Polynomial
Activations

Consider the network f(x) =
∑m

j=1 σ(x
Tuj)αj where the activation function

σ is the degree-two polynomial σ(u) = au2 + bu + c. First, we note that the
neural network output can be written as

f(x) =

m∑
j=1

(
a(xTuj)

2 + bxTuj + c
)
αj =

m∑
j=1

(
⟨axxT , ujuTj ⟩+ ⟨bx, uj⟩+ c

)
αj

=

〈vec(axxT )bx
c

 ,
vec(∑m

j=1 uju
T
j αj)∑m

j=1 ujαj∑m
j=1 αj

〉
= ⟨ϕ(x), ψ({uj , αj}mj=1)⟩ , (11)

where ϕ : Rd → Rd2+d+1 and ψ : Rm(d+1) → Rd2+d+1 are formally defined in
the sequel. The above identity shows that the nonlinear neural network output
is linear over the lifted features

ϕ(x) :=
(
axxT , bx, c

)
∈ Rd2+d+1.
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Fig. 2 (Left) The Neural Cone C1
2 described by (u2α, uα, α) ∈ R3 where u, α ∈ R, |u| ≤

1. (Right) Neural Spectrahedron M(1) described by (Z11, Z12, Z22) ∈ R3 where Z =Z11 Z12 Z13

Z12 Z22 Z23

Z13 Z23 Z33

 ⪰ 0, Z11 + Z22 = Z33 ≤ 1 (constrained to the slice Z22 = Z11 and Z′ = 0

in (14)). Note that we display a slice of the spectrahedron, which is higher dimensional.

In turn, the nonlinear model f(x) is completely characterized by the lifted
parameters which we define as the following matrix-vector-scalar triplet

ψ({uj , αj}mj=1) :=
( m∑

j=1

uju
T
j αj ,

m∑
j=1

ujαj ,

m∑
j=1

αj

)
∈ Rd2+d+1.

Optimizing over the lifted parameter space initially appears as hard as the
original non-convex neural network training problem. This is due to the cubic
and quadratic terms involving the weights of the hidden and output layer in the
lifted parameters. Furthermore, norms of the network weights are nonlinear in
the lifted parameters, which complicates regularization terms, e.g.,

∑m
j=1 ∥uj∥22

typically included in training. Nevertheless, one of our main results shows that
the lifted parameters can be exactly described using linear matrix inequalities.

We begin by characterizing the lifted parameter space as a non-convex
cone.

Definition 1 (Neural Cone of degree two) We define the non-convex cone

Cm2 ⊆ Rd2+d+1 as

Cm2 :=

{( m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,
m∑
j=1

αj

)
: uj ∈ Rd, ∥uj∥2 = 1, αj ∈ R ∀j ∈ [m]

}
.

(12)

See Figure 2 (left) for a depiction of C12 ⊆ R3 corresponding to the case m =
1, d = 1.

Surprisingly, we will show that the original non-convex neural network problem
is solved exactly to global optimality when the optimization is performed over
a convex set which we define as the Neural Spectrahedron, given by the convex
hull of the cone C2. In other words, every element of the convex hull can be
associated with a neural network of the form f(x) =

∑m
j=1 σ(x

Tuj)αj through
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a special matrix decomposition procedure which we introduce in the Neural
Decomposition section. Moreover, a Neural Spectrahedron can be described
by a simple linear matrix inequality. Consequently, these two results enable
global optimization of neural networks with polynomial activations of degree
two in polynomial time with respect to all problem parameters: dimension d,
number of samples n and number of neurons m. To the best of our knowl-
edge, this is the first instance of a method that globally optimizes a standard
neural network architecture with computational complexity polynomial in all
problem dimensions. We refer the reader to the recent work [38] for a convex
optimization formulation of networks with ReLU activation, where the worst
case computational complexity is O((nr )

r) with r = rank(X).

It is equally important that our results characterize neural networks as
constrained linear learning methods ⟨ϕ(x), ψ⟩ in the lifted feature space ϕ(x),
where the constraints on the lifted parameters ψ are precisely described by
a Neural Spectrahedron via linear matrix inequalities. These constraints can
be easily tackled with convex semidefinite programming or closed-form pro-
jections onto these sets in iterative first-order algorithms.

Next, we describe a compact set that we call neural spectrahedron which
describes the lifted parameter space of networks with a constraint on the ℓ1
norm of output layer weights.

Definition 2 A neural spectrahedron Sm2 (t) ⊆ Rd2+d+1 is defined as the com-
pact convex set

Sm2 (t) := conv

{( m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,

m∑
j=1

αj

)
: ∥uj∥2 = 1,

αj ∈ R,∀j ∈ [m],

m∑
j=1

|αj | ≤ t

}
. (13)

We will show that a neural spectrahedron can be equivalently described as
a linear matrix inequality via defining Sm

2 (t) =
(
M1(t),M2(t),M4(t)

)
with

M1(t) ∈ Rd×d,M2(t) ∈ Rd×1 andM4(t) ∈ R for all m ≥ m∗ where

M(t) =

{
Z − Z ′ : Z =

[
Z1 Z2

ZT
2 Z4

]
⪰ 0, Z ′ =

[
Z ′
1 Z ′

2

Z ′
2
T
Z ′
4

]
⪰ 0,

tr(Z1) = Z4, tr(Z
′
1) = Z ′

4, Z4 + Z ′
4 ≤ t

}
, (14)

Z,Z ′ ∈ S(d+1)×(d+1), Z1, Z
′
1 ∈ Sd×d, Z2, Z

′
2 ∈ Rd×1 and Z4, Z

′
4 ∈ R+, and

m∗ = m∗(t) is a critical number of neurons that satisfies m∗(0) = 0 and
m∗(t) ≤ 2(d + 1) ∀t, which will be explicitly defined in the sequel. Therefore,
an efficient description of the set M(t) in terms of linear matrix inequalities
enables efficient convex optimization methods in polynomial time.
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2.1 A Direct Derivation of SDP Formulations of the Neural Spectrahedron

In this section, we show how to obtain SDP based formulations of the neural
network problem using a direct approach. In Section 3, we will show that this
direct formulation is identical to the one obtained through Lagrangian duality,
mirroring the relaxations of non-convex quadratic programs shown in Section
1.4.

First, we separate positive and negative components of the parameters
{αj}mj=1, and parameterize Sm2 (t) as follows

Sm2 (t) =
{+Sm2 (t+) ⊕ +Sm2 (t−) : t+, t− ≥ 0, t+ + t− = t

}
, (15)

where ⊕ denotes the Minkowski sum and we defined the one-sided Neural
Spectrahedron +Sm2 (t+) as

+Sm2 (t) := conv

{( m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,

m∑
j=1

αj

)
: ∥uj∥2 = 1,

αj ∈ R+,∀j ∈ [m],

m∑
j=1

αj ≤ t

}
. (16)

We observe that +Sm2 (t) is identical to the set
(
+M1,

+M2,
+M4

)
⊆ Rd2+d+1

where

+M(t) := t conv

{
m∑
j=1

[
uj
1

] [
uj
1

]T
αj : uj ∈ Rd, ∥uj∥2 = 1,

αj ∈ R+,∀j ∈ [m],

m∑
j=1

αj ≤ 1

}
, (17)

which is partitioned as +M(t) =

[
+M1

+M2
+MT

2
+M4

]
and +M1 ⊆ Sd×d, +M2 ⊆

Rd×1 and +M4 ⊆ R+.
Next, we note that as soon as the network width2 satisfies m ≥ d+ 1, we

have

+M(t) : = t conv

{{[
u
1

] [
u
1

]T
: ∥u∥2 = 1

}
∪ 0

}
, (18)

where 0 is the zero matrix, since
∑m

j=1

[
uj
1

] [
uj
1

]T
αj ∈ S(d+1)×(d+1) is a

positive semidefinite matrix, and hence can be factorized3 as a convex combi-

nation of at most d + 1 rank-one matrices of the form

[
u
1

] [
u
1

]T
. Note that

2 This assumption on the width is relaxed in Theorem 1 (see Section 3).
3 We describe the details of this factorization in the Neural Decomposition section.
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the zero matrix is included to account for the inequality
∑m

j=1 αj ≤ 1 in (17).
This important observation enables us to represent the convex hull of the non-
convex Neural Cone (an example is shown in Figure 2), via the simple convex
body +M(t) given in (18).

Most importantly, the positive Neural Spectrahedron set +M(t) provides
a representation of the non-convex Neural Cone Cm2 via its extreme points.
+M(t) has a simple description as a linear matrix inequality provided in the
following lemma (the proof can be found in the appendix).

Lemma 1 For m ≥ d+ 1, it holds that

+M(t) =

{
Z : Z =

[
Z1 Z2

ZT
2 Z4

]
⪰ 0, tr(Z1) = Z4 ≤ t

}
. (19)

Therefore the positive Neural Spectrahedron can be represented as the inter-
section of the positive semidefinite cone and linear inequalities. Moreover, ev-

ery element of +M(t) can be factorized as
∑m

j=1

[ujuTj αj ujαj

uTj αj αj

]
for some

∥uj∥2 = 1, αj ≥ 0, ∀j ∈ [m],
∑m

j=1 αj ≤ t, which can be identified as an el-
ement of the non-convex Neural Cone Cm2 and a neural network in the lifted
parameter space as shown in (11).

The assumption m ≥ d + 1 is only used here for the simplicity of the
illustration. We improve this condition on m, the width of the network, for the
same SDP formulation in Section 3. In the following sections, we only require
m ≥ m∗, where m∗ can be determined via the convex SDP. Furthermore,
the regularization parameter directly controls the number of neurons m∗. We
illustrate the effect of the regularization parameter on m∗ in the numerical
experiments section, and show that m∗ can be made arbitrarily small.

3 Convex Optimization and Duality for Degree-Two Polynomial
Activation Networks

We consider the non-convex training of a two-layer fully connected neural
network with degree-two polynomial activations f(x) =

∑m
j=1 σ(x

Tuj)αj and
derive a convex dual optimization problem. Here, σ is the degree-two polyno-
mial σ(u) = au2 + bu + c. This neural network has m neurons with the first
layer weights uj ∈ Rd and second layer weights αj ∈ R. We refer to this case
where f : Rd → R as the scalar output case. The results are extended to the
vector output case in the supplementary material [4].

It is relatively easy to obtain a weak dual that provides a lower-bound via
Lagrangian duality. However, in non-convex problems, a duality gap may exist
since strong duality does not hold in general. Remarkably, we show that strong
duality holds as soon as the network width exceeds a threshold which can be
easily determined.

We will assume ℓ1 norm regularization on the second layer weights as reg-
ularization and include constraints that the first layer weights are unit norm.
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We note that ℓ1 norm regularization on the second layer weights results in
a special dual problem and hence is crucial in the derivations. We show in
Square Activation Networks section that this formulation is equivalent to cu-
bic regularization when the activation function is the square activation. For
the squared ℓ2 norm regularization, i.e., weight decay, we will in fact show that
the problem is NP-hard.

The training of a network under this setting requires solving the non-convex
optimization problem given by

(P ) min
uj∈Rd,αj∈R,∀j∈[m]

ℓ

 m∑
j=1

σ(Xuj)αj , y

+ β

m∑
j=1

|αj |

s.t. ∥uj∥2 = 1, ∀j ∈ [m] . (20)

Here, ℓ(·, y) is a convex loss function, e.g., squared loss or logistic loss. We will
use the notation p∗ := min(P ), i.e., the minimum value of the optimization
problem (P ). Theorem 1 states the main result for degree-two polynomial
activation neural networks that the non-convex optimization problem in (20)
can be solved globally optimally via a convex problem.

Theorem 1 (Globally optimal convex program for degree-2 polyno-
mial activation networks) The solution of the convex problem

(SDRP ) min
Z,Z′∈S(d+1)×(d+1)

ℓ(ŷ, y) + β(Z4 + Z ′
4)

s.t. ŷi = axTi (Z1 − Z ′
1)xi + bxTi (Z2 − Z ′

2) + c(Z4 − Z ′
4),

i = 1, . . . , n

tr(Z1) = Z4, tr(Z
′
1) = Z ′

4

Z =

[
Z1 Z2

ZT
2 Z4

]
⪰ 0, Z ′ =

[
Z ′
1 Z ′

2

Z ′
2
T
Z ′
4

]
⪰ 0 (21)

provides a global optimal solution for the non-convex problem (P) in (20) when
the number of neurons satisfies m ≥ m∗ where

m∗ = rank(Z∗) + rank(Z ′∗). (22)

Z∗ and Z ′∗ denote the optimal solution of the convex program in (21). The
optimal network weights can be extracted from Z∗ and Z ′∗ using the Neural
Decomposition procedure. It follows that the optimal number of neurons is
upper bounded by m∗ ≤ 2(d+ 1).

To the best of our knowledge, Theorem 1 provides the first method that
globally optimizes a standard non-trivial neural network architecture with
computational complexity polynomial in all problem dimensions.

The convex SDP in (21) and the other SDP formulations presented in
this paper can be solved using interior point algorithms. Since the Slater’s
condition holds for these SDPs, the interior point algorithm for these problems
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are polynomial time in the real number model, where the representations of
the numbers are ignored and only the number of iterations is bounded by a
polynomial ([27]).

The proof of Theorem 1 consists of two parts. In the first part, we lever-
age convex duality to find a lower-bounding convex SDP in Section 3.1. In
the second part, we show a matching upper bound via the proposed Neural
Decomposition algorithm in Section 4.

3.1 Lower Bound Proof for Theorem 1

In this section we show that the solution of the convex program (21) provides
a lower bound for the solution of the non-convex problem (20). In the Neural
Decomposition section, we prove, via the method of neural decomposition,
that the solution of the convex problem provides also an upper bound, which
concludes the proof of Theorem 1.

In proving the lower bound, we leverage duality. Minimizing over first αj ’s
and then uj ’s, we can restate the problem (P) given in (20) as

p∗ = min
uj∈Sd,∀j∈[m]

min
αj∈R,∀j∈[m],ŷ∈Rn

ℓ (ŷ, y) + β

m∑
j=1

|αj |

s.t. ŷ =

m∑
j=1

σ(Xuj)αj , (23)

where the set Sd is defined as Sd := {u ∈ Rd : ∥u∥2 = 1}. Here, we use the
notation p∗ := min(P ). The dual problem for the inner minimization problem
is given by

max
v∈Rn

−ℓ∗(−v) s.t. |vTσ(Xuj)| ≤ β, ∀j ∈ [m] . (24)

Next, let us call the optimal solution of the following problem d∗

d∗ = min
uj∈Sd,∀j∈[m]

max
v∈Rn

−ℓ∗(−v)

s.t. |vTσ(Xuj)| ≤ β,∀j ∈ [m] . (25)

By changing the order of the minimization and maximization operations, we
obtain the following bound

d∗ ≥max
v∈Rn

−ℓ∗(−v)

s.t. |vTσ(Xu)| ≤ β,∀u ∈ Sd . (26)
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We note that the inequality |vTσ(Xu)| ≤ β can equivalently be written as two
quadratic (in u) inequalities

uT

(
a

n∑
i=1

xix
T
i vi

)
u+ bvTXu+ cvT 1̄ ≤ β,

−uT
(
a

n∑
i=1

xix
T
i vi

)
u− bvTXu− cvT 1̄ ≤ β. (27)

Next, we use the S-procedure given in Corollary 1 to reformulate the problem
in (26) as a problem with linear matrix inequality constraints. Corollary 1 is
based on Lemma 2 which characterizes the solvability of a quadratic system.
The proof of Corollary 1 is given in the supplementary material [4].

Lemma 2 (Proposition 3.1 from [39]) Let f1 and f2 be quadratic functions
where f2 is strictly concave (or strictly convex) and assume that f2 takes both
positive and negative values. Then, the following two statements are equivalent:

1. f1(u) < 0, f2(u) = 0 is not solvable.
2. There exists λ ∈ R such that f1(u) + λf2(u) ≥ 0, ∀u.

Corollary 1 (S-procedure with equality) max∥u∥2=1 u
TQu + bTu ≤ β if

and only if there exists λ ∈ R such that[
λI −Q − 1

2b
− 1

2b
T β − λ

]
⪰ 0 .

Corollary 1 allows us to write the maximization problem in (26) as the
equivalent problem given by

max
v∈Rn

ρ1,ρ2∈R

− ℓ∗(−v)

s.t.

[
ρ1I − a

∑n
i=1 xix

T
i vi − 1

2bX
T v

− 1
2bv

TX β − c 1̄T v − ρ1

]
⪰ 0[

ρ2I + a
∑n

i=1 xix
T
i vi

1
2bX

T v
1
2bv

TX β + c 1̄
T
v − ρ2

]
⪰ 0 , (28)

where we note the two additional variables ρ1, ρ2 ∈ R are introduced. Next,
we will find the dual of the problem in (28). Let us first define the following
Lagrange multipliers

Z =

[
Z1 Z2

Z3 Z4

]
, Z ′ =

[
Z ′
1 Z

′
2

Z ′
3 Z

′
4

]
, (29)

where Z,Z ′ ∈ S(d+1)×(d+1) are symmetric matrices, and the dimensions for
each block matrix are Z1, Z

′
1 ∈ Sd×d, Z2, Z

′
2 ∈ Rd×1, Z3, Z

′
3 ∈ R1×d, Z4, Z

′
4 ∈
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R1×1. We note that because of the symmetry of Z and Z ′, we have ZT
2 = Z3

and Z2
′T = Z ′

3. The Lagrangian for the problem in (28) is

L(v,ρ1, ρ2, Z, Z
′) = −ℓ∗(−v) + ρ1 tr(Z1) + ρ2 tr(Z

′
1)− a

n∑
i=1

vix
T
i (Z1 − Z ′

1)xi

− bvTX(Z2 − Z ′
2) + (β − ρ1)Z4 + (β − ρ2)Z ′

4 − c
n∑

i=1

vi(Z4 − Z ′
4). (30)

Maximizing the Lagrangian with respect to v, ρ1, ρ2, we obtain the problem
(SDRP) given in (21), which concludes the lower bound part of the proof. In
Neural Decomposition section, we introduce a method for decomposing the
solution of this convex program (i.e. Z∗ and Z ′∗) into feasible neural network
weights to prove the upper bound.

4 Neural Decomposition

A lower bound on the optimal value of the non-convex problem (P) in (20) is
obtained via the solution of the convex program (SDRP) in (21) that we have
derived using Lagrangian duality. Now we show that this lower bound is in fact
identical to the optimal value of the non-convex problem, thus proving strong
duality. Our approach is based on proving an upper bound by constructing
neural network weights from the solution of the convex problem such that
the convex objective achieves the same objective as the non-convex objective.
Suppose that (Z∗, Z ′∗) is a solution to (21). Let us denote the rank of Z∗ by
r and the rank of Z ′∗ by r′. We will discuss the decomposition for Z∗ and
then complete the picture by considering the same decomposition for Z ′∗. We
begin by noting that Z∗ satisfies the constraints of (21), i.e.,

Z∗ ⪰ 0, tr(Z∗
1 ) = Z∗

4 , or tr
(
Z∗
[
Id 0
0 −1

]
︸ ︷︷ ︸

G

)
= 0. (31)

Suppose that we have a decomposition of Z∗ as a sum of rank-1 matrices
such that Z∗ =

∑r
j=1 pjp

T
j where pj ∈ Rd+1 and tr(pjp

T
j G) = pTj Gpj =

0 for j = 1, . . . , r. We show how this can always be done in the following
subsection by introducing a new matrix decomposition method, dubbed the
neural decomposition procedure.

Letting pj :=
[
cTj dj

]T
with cj ∈ Rd and dj ∈ R, we note that pTj Gpj = 0

implies ∥cj∥22 = d2j . We may assume pj ̸= 0, ∀j in the decomposition (otherwise

we can simply remove zero components), implying ∥cj∥22 > 0, ∀j. Furthermore,
this expression for pj ’s allows us to establish that

r∑
j=1

pjp
T
j =

r∑
j=1

[
cj
dj

] [
cTj dj

]
=

r∑
j=1

[
cjc

T
j cjdj

djc
T
j d2j

]
=

[
Z∗
1 Z

∗
2

Z∗
3 Z

∗
4

]
. (32)
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As a result, we have the following decompositions:

Z∗
1 =

r∑
j=1

cjc
T
j =

r∑
j=1

uju
T
j ∥cj∥22 =

r∑
j=1

uju
T
j d

2
j (33)

Z∗
2 =

r∑
j=1

cjdj =

r∑
j=1

ujdj∥cj∥2 =

r∑
j=1

ujdj |dj | (34)

Z∗
4 =

r∑
j=1

d2j , (35)

where we have introduced the normalized weights uj =
cj

∥cj∥2
, j = 1, . . . , r. If

dj ≤ 0 for some j, we redefine the corresponding pj as pj ← −pj , which does
not modify the decomposition

∑
j pjp

T
j and the equality pTj Gpj = 0. Hence,

without loss of generality, we can assume that dj ≥ 0 for all j = 1, . . . , r, which
leads to

Z∗
1 =

r∑
j=1

uju
T
j d

2
j , Z∗

2 =

r∑
j=1

ujd
2
j , Z∗

4 =

r∑
j=1

d2j . (36)

Similarly for Z ′∗, we will form the following decompositions:

Z ′
1
∗
=

r′∑
j=1

u′ju
′
j
T
d′j

2
, Z ′

2
∗
=

r′∑
j=1

u′jd
′
j
2
, Z ′

4
∗
=

r′∑
j=1

d′j
2
. (37)

Considering the decompositions for both Z∗ and Z ′∗, finally we obtain a neural
network with first layer weights as {u1, . . . , ur, u′1, . . . , u′r′}, and second layer

weights as {d21, . . . , d2r,−d′1
2
, . . . ,−d′r′

2}. We note that this corresponds to a
neural network with r+ r′ neurons. If both Z∗ and Z ′∗ are full rank, then we
will have 2(d+ 1) neurons, which is the maximum.

To see why we can use the decompositions of Z∗ and Z ′∗ to construct
neural network weights, we plug the expressions (36) and (37) in the objective
of the convex program in (21):

ℓ(ŷ, y) + β

( r∑
j=1

|d2j |+
r′∑

j=1

| − d′j
2|
)
, where

ŷi = axTi

( r∑
j=1

uju
T
j d

2
j +

r′∑
j=1

u′ju
′
j
T
(−d′j

2
)

)
xi + bxTi

( r∑
j=1

ujd
2
j +

r′∑
j=1

u′j(−d′j
2
)

)

+ c

( r∑
j=1

d2j +

r′∑
j=1

(−d′j
2
)

)
, i = 1, . . . , n . (38)

We note that this expression exactly matches the optimal value of the non-
convex objective in (20) for a neural network with r+r′ neurons. Also, the unit
norm constraints on the first layer weights are satisfied (hence feasible) since
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uj ’s and u
′
j ’s are normalized. This establishes that the neural network weights

obtained from the solution of the convex program provide an upper bound
for the minimum value of the original non-convex problem. Consequently, we
have shown that the optimal solution of the convex problem (SDRP) in (21)
provides a global optimal solution to the non-convex problem (P) in (20) and
this concludes the proof of Theorem 1.

4.1 Neural Decomposition Procedure

Here we describe the procedure for computing the decomposition given by

Z∗ =
∑r

j=1 pjp
T
j ⪰ 0 such that pTj Gpj = 0, j = 1, . . . , r where G =

[
Id 0
0 −1

]
.

The computational complexity of this procedure is at most O(d3), which is
dominated by the cost of one Eigenvalue Decomposition of Z∗ in the initial
step. This algorithm is inspired by the constructive proof of the S-procedure
given in Lemma 2.4 of [39] with modifications to account for the equalities
pTj Gpj = 0.

Neural Decomposition for PSD Matrices:
0. Compute a rank-1 decomposition Z∗ =

∑r
j=1 pjp

T
j .

This can be done with the Cholesky decomposition, or the eigenvalue
decomposition Z∗ =

∑r
j=1 qjq

T
j λj . Since Z

∗ ⪰ 0, we have λj > 0, for
j = 1, . . . , r. Then we can obtain the desired rank-1 decomposition Z∗ =∑r

j=1 pjp
T
j by defining pj =

√
λjqj , j = 1, . . . , r.

1. If pT1Gp1 = 0, return y = p1. If not, find a j ∈ {2, . . . , r} such that
(pT1Gp1)(p

T
j Gpj) < 0.

We know such j exists since tr(Z∗G) =
∑r

j=1 p
T
j Gpj = 0 (this is true

since it is one of the constraints of the convex program), and pT1Gp1 ̸= 0.
Hence, for at least one j ∈ {2, . . . , r}, pTj Gpj must have the opposite sign

as pT1Gp1.
2. Return y =

p1+αpj√
1+α2

where α ∈ R satisfies (p1 + αpj)
TG(p1 + αpj) = 0.

We know that such α exists since the quadratic equation

(p1 + αpj)
TG(p1 + αpj) = α2pTj Gpj + 2αpT1 pj + pT1Gp1 = 0 (39)

has real solutions as the discriminant 4(pT1 pj)
2− 4(pT1Gp1)(p

T
j Gpj) is pos-

itive due to step 1 where we picked j such that (pT1Gp1)(p
T
j Gpj) < 0. To

find α, we simply solve the quadratic equation for α.
3. Update r ← r − 1, and then the vectors p1, . . . , pr as follows:

Remove p1 and pj and insert u =
pj−αp1√

1+α2
. Consequently, we will be dealing

with the updated matrix Z∗ ← Z∗ − yyT in the next iteration, which is of
rank r − 1:

Z∗ − yyT = uuT +

r∑
i=2,i̸=j

pip
T
i . (40)
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Fig. 3 Illustration of the neural decomposition procedure for d = 2 (i.e. Z∗ ∈ R3×3). The
dashed red arrows correspond to the eigenvectors of Z∗ (q1, q2, q3) and the solid blue arrows
show the decomposed vectors p1 and p2. In this example, the rank of Z∗ is 2 where q1 and q2
are its two principal eigenvectors. The eigenvalue corresponding to the eigenvector q1 is zero.
The light blue colored surface shows the Lorentz cones z =

√
x2 + y2 and z = −

√
x2 + y2.

We observe that the decomposed vectors p1 and p2 lie on the boundary of Lorentz cones.

Note that Step 0 is carried out only once and then steps 1 through 3 are
repeated r−1 times. At the end of r−1 iterations, we are left with the rank-1
matrix p1p

T
1 which satisfies pT1Gp1 = 0 since initial Z∗ satisfies tr(Z∗G) = 0

and the following r− 1 updates are of the form yyT which satisfies yTGy = 0.
If we denote the returned y vectors as yi for the iteration i and yr is the
last one we are left with, then yi’s satisfy the desired decomposition that
Z∗ =

∑r
i=1 yiy

T
i and yTi Gyi = 0, i = 1, . . . , r.

Figure 3 is an illustration of the neural decomposition procedure for a toy
example with d = 2 where the eigenvectors of Z∗ and the vectors pj are plotted
together. Due to the constraints pTj Gpj = 0, j = 1, 2, the vectors pj have to

lie on the boundary of Lorentz cones4 z =
√
x2 + y2 and z = −

√
x2 + y2.

Decomposing the solution of the convex problem Z∗ and Z ′∗ onto these cones,
i.e., neural decomposition, enables the construction of neural network weights
from Z∗ and Z ′∗.

5 Standard Weight Decay Formulation is NP-Hard

In the previous sections, we have studied the training of two-layer neural net-
works and derived a convex program whose solution globally optimizes the
non-convex problem. In contrast, Theorem 2 states that if we have quadratic
regularization (i.e. weight decay), the resulting optimization problem given in

4 In special relativity, Lorentz cones describe the path that a flash of light, emanating
from a single event traveling in all directions takes through spacetime (see Figure 1.3.1 in
[32]).
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(41) is an NP-hard problem:

(PWD) min
uj∈Rd,

αj∈R,∀j∈[m]

ℓ

( m∑
j=1

(Xuj)
2αj , y

)
+ β

m∑
j=1

(α2
j + ∥uj∥22) . (41)

Theorem 2 The two-layer neural network optimization problem with square
activation and standard squared ℓ2 norm regularization, i.e., weight decay, in
(41) is NP-hard for any value of m as β → 0.

The proof of Theorem 2 is deferred to the appendix. The proof relies on the
polynomial time reduction of the problem PWD from the NP-hard problem of
phase retrieval. This result illustrates the type of regularization function plays
a significant role in the computational tractability of the optimal training
problem.

Remark 1 It follows from Theorem 2 that the two-layer neural network train-
ing problem with degree-two polynomial activation and unit norm first layer
weights and

∑
j |αj |p as the regularization term with p < 1 is also NP-hard

for β → 0 since it reduces to the square activation case for the polynomial
coefficients a = 1, b = 0, c = 0.

6 Numerical Results

In this section, we present numerical results that verify the presented theory
of the convex formulations along with experiments comparing the test set
performance of the derived formulations. All experiments have been run on a
MacBook Pro with 16GB RAM.

We have used CVXPY [11,1] for solving the convex SDPs. In particular,
we have used the open source solver SCS (splitting conic solver) [35,36] in
CVXPY, which is a scalable first order solver for convex cone problems.

Furthermore, we have solved the non-convex problems via backpropagation
for which we have used PyTorch [37]. We have used the SGD algorithm for
the non-convex models. For all the experiments involving SGD in this section,
we show only the results corresponding to the best learning rate that we select
via an offline hyperparameter search. The momentum parameter is 0.9. In the
plots, the non-convex models are either labeled as ‘Backpropagation (GD)’
or ‘Backpropagation (SGD)’. The first one, short for gradient descent, means
that the batch size is equal to the number of samples n, and the second one,
short for stochastic gradient descent, means that the batch size is not n and
the exact batch size is explicitly stated in the figure captions.

Figure 4 compares the solution of the non-convex problem via backprop-
agation and the solution of the corresponding convex program via a convex
solver. The training and test costs are shown for a regression task with ran-
domly generated data for the two-layer square activation neural network. We
observe that convex SDP takes a much shorter time to optimize and obtains a
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Fig. 4 Cost against wall-clock time on the training (left) and test (right) sets for stochastic
gradient descent (SGD) and the convex SDP for square activation networks. The solid
lines show the training curve of the non-convex model with SGD (with learning rate tuned
optimally via extensive grid search) and each different colored solid curve corresponds to an
independent trial. The dotted horizontal curve shows the cost for the convex SDP and the
cross indicates the time that it takes to solve the convex SDP. The dataset X is synthetically
generated by sampling from the i.i.d. Gaussian distribution and has dimensions n = 100, d =
10. Labels y are generated by a teacher network with 10 planted neurons. The regularization
coefficient is β = 10−6 and the batch size for SGD is 10.

globally optimal solution while the SGD algorithm converges to local minima
in some of the trials where the initialization is different.

Figure 5 compares the accuracy of the non-convex degree-two polynomial
activation model when it is trained with different optimizers (SGD and Adam
[24]) for a range of step sizes. The plots in Figure 5 show results for the
convolutional neural network model. We observe that the convex formulations
outperform the non-convex solution via SGD and Adam. The extension of the
main result to convolutional neural networks is discussed in the supplementary
material [4].

6.1 Comparison with ReLU Networks

We compare the classification accuracies for degree-two polynomial activa-
tion and ReLU activation in Figure 6 on three different binary classification
UCI datasets. The regularization coefficient has been picked separately for
degree-two polynomial activation and ReLU activation networks to maximize
the accuracy. Figure 6 demonstrates that the convex SDP shows competitive
accuracy performance and faster run times compared to ReLU networks.

6.2 Regularization Parameter

Figure 7 shows how the accuracy changes as a function of the regularization
coefficient β for the convex problem for two-layer degree-two polynomial ac-
tivation networks. Figure 7 highlights that the choice of the regularization
coefficient is critical in the accuracy performance. In plot a, we see that the
value of β that maximizes the test set accuracy is β = 10 for which the optimal
number of neurons m∗ is near 20. We note that for the dataset in plot a, the
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Fig. 5 Classification accuracy for various learning rates and optimizers are plotted on the
same figure. SGD and Adam are used in solving the non-convex optimization problem. The
solid blue lines each correspond to a different learning rate for SGD and each dashed green
curve corresponds to a different learning rate for the Adam algorithm. Plots a, b: CNN with
degree-two polynomial activations and global average pooling for binary classification on
the first two classes of the MNIST dataset (12000 training samples). Plots c, d: The same
architecture as plots a, b and the dataset is the first two classes of the CIFAR-10 dataset
(10000 training samples). Plots e, f: Fully connected architecture for binary classification on
the dataset oocytes-merluccius-nucleus-4d.

optimal number of neurons is upper bounded by m∗ ≤ 2(d+1) = 32. Similarly
for plot b, the best choice for the regularization coefficient is β = 1 and the
optimal number of neurons for β = 1 is near 40. Furthermore, we observe that
a higher value for β tends to translate to a lower optimal number of neurons
m∗ (plotted on the right vertical axis). Even though the convex optimization
problem in (21) has a fixed number of variables (in this case, 2(d+ 1)2) for a
given dataset, a low number of neurons is still preferable for many reasons such
as inference speed. We observe that the number of neurons can be controlled
via the regularization coefficient β.
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Fig. 6 Comparison of classification accuracies for neural networks with ReLU activation,
degree-two polynomial activation (a = 0.09, b = 0.5, c = 0.47), and the convex SDP. DS1:
dataset 1 is the oocytes-merluccius-nucleus-4d (n = 817, d = 41), DS2: dataset 2 is the
credit approval dataset (n = 552, d = 15), DS3: dataset 3 is the breast cancer dataset
(n = 228, d = 9).
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Fig. 7 Accuracy (left vertical axis) and optimal number of neurons (right vertical axis)
against the regularization coefficient β on binary classification datasets. These results have
been obtained using the convex program in (21). The dimensions of the datasets are n =
552, d = 15 for plot a and n = 280, d = 33 for plot b.
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7 Discussion

In this paper, we have studied the optimization of two-layer neural networks
with degree-two polynomial activations. We have shown that regularization
plays an important role in the tractability of the problems associated with
neural network training. We have developed convex programs for the cases
where the regularization leads to tractable formulations. Convex formulations
are useful since they have many well-known advantages over non-convex op-
timization such as having to optimize fewer hyperparameters and no risk of
getting stuck at local minima.

The methods presented in this work optimize the neural network param-
eters in a higher dimensional space in which the problem becomes convex.
For fully connected neural networks with square activation, the standard non-
convex problem requires optimizing m neurons (i.e. a d-dimensional first layer
weight and a 1-dimensional second layer weight per neuron). The convex pro-
gram for this neural network finds the optimal network parameters in the lifted
space Sd×d. For degree-two polynomial activations, convex optimization takes
place for Z and Z ′ in S(d+1)×(d+1). We note that the dimensions of the convex
programs are polynomial with respect to all problem dimensions. In contrast,
the convex program of [38] has 2dH variables where H grows exponentially
with respect to the rank of the data matrix.

We have used the SCS solver with CVXPY for solving the convex problems
in the numerical experiments. It is important to note that there is room for
future work in terms of which solvers to use. Solvers specifically designed for
the presented convex programs could enjoy faster run times.

The scope of this work is limited to two-layer neural networks. We note
that it is a promising direction to consider the use of our convex programs for
two-layer neural networks as building blocks in learning deep neural networks.
Many recent works such as [2] and [5] investigate layerwise learning algorithms
for deep neural networks. The training of individual layers in layerwise learn-
ing could be improved by the presented convex programs since the convex
programs can be efficiently solved and eliminate much of the hyperparameter
tuning involved in standard neural network training.
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Appendix

This appendix contains proofs not included in the main body of the paper.

A Proof of Theorem 2

This section breaks down the proof of Theorem 2. At the core of the proof is
the polynomial time reduction of the problem from the NP-hard problem of
phase retrieval.

A.1 Equivalent Problem Representation

The optimization problem for training a two-layer fully connected neural net-
work with square activation and quadratic regularization can be stated as

p∗ := min
uj∈Rd,

αj∈R,∀j∈[m]

ℓ

( m∑
j=1

(Xuj)
2αj , y

)
+
β

c

m∑
j=1

(α2
j + ∥uj∥22) , (42)

where the scaling factor c is the same as before (i.e. c = 2
1
3 +2−

2
3 ≈ 1.88988).

Rescaling uj ← ujt
1/2
j and αj ← αj/tj for tj > 0, j = 1, . . . ,m, we obtain the

following equivalent optimization problem

p∗ = min
uj∈Rd,

αj∈R,∀j∈[m]

ℓ

( m∑
j=1

(Xuj)
2αj , y

)
+
β

c

m∑
j=1

(α2
j/t

2
j + ∥uj∥22tj) . (43)

Note that the regularization term is convex in tj for tj > 0. Optimizing the reg-

ularization term with respect to tj leads to tj = 21/3
(

|αj |
∥uj∥2

)2/3
and plugging

this in yields

p∗ = min
uj∈Rd,

αj∈R,∀j∈[m]

ℓ

( m∑
j=1

(Xuj)
2αj , y

)
+ β

m∑
j=1

|αj |2/3∥uj∥4/32 . (44)

Defining scaled weights α′
j = αj∥uj∥22 and u′j = uj/∥uj∥2, we obtain the

equivalent problem

p∗ = min
u′
j∈Rd,α′

j∈R
s.t. ∥u′

j∥2=1,∀j∈[m]

ℓ

( m∑
j=1

(Xu′j)
2α′

j , y

)
+ β

m∑
j=1

|α′
j |2/3 . (45)

This shows that solving the standard weight decay formulation is equivalent
to having the power of 2/3 on the second layer weights as regularization and
unit norm first layer weights as constraints.
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A.2 Hardness Result

We design a data matrix such that the solution coincides with solving the
phase retrieval problem which is NP-hard (see [16]). We consider the equality
constrained version of (45), i.e., β → 0, which is given by

min
uj∈Rd,αj∈R

s.t. ∥uj∥2=1,∀j∈[m]

m∑
j=1

|αj |2/3

s.t.

m∑
j=1

(Xuj)
2αj = y . (46)

A.2.1 Addition of a Simplex Constraint

Let the first d rows of the data matrix X be eT1 , . . . , e
T
d and let the first d

entries of y be 1/d. Then, the constraint
∑m

j=1(Xuj)
2 = y implies

m∑
j=1

u2jkαj = 1/d for k = 1, . . . , d . (47)

Summing the above for all k = 1, . . . , d, and noting that
∑d

k=1 u
2
jk = 1 lead

to the constraint
∑m

j=1 αj = 1.

A.2.2 Reduction from the NP-Hard Phase Retrieval and Subset Sum Problem

We letX = [I; X̃] and y = [ 1d 1̄; ỹ] to obtain the simplex constraint
∑m

j=1 αj =
1 as shown in the previous subsection. In this case, the optimization problem
reduces to

min
uj∈Rd,αj∈R

s.t. ∥uj∥2=1,∀j∈[m]

m∑
j=1

|αj |2/3

s.t.

m∑
j=1

(X̃uj)
2αj = ỹ

m∑
j=1

u2jkαj = 1/d, k = 1, . . . , d

m∑
j=1

αj = 1 . (48)

Suppose that there exists a feasible solution {α∗
j , u

∗
j}mj=1, which satisfies ∥α∗∥0 =

1, where α∗
1 = 1 and u∗1

Tu∗1 = 1 with only one nonzero neuron. Then, it fol-
lows from Lemma 3 that this solution is strictly optimal. Consequently, the
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problem in (48) is equivalent to

findu1∈Rd u1

s.t. (x̃Ti u1)
2 = ỹi, i = 1, . . . , (n− d)

u21k = 1/d, k = 1, . . . , d . (49)

Lemma 3 (ℓp minimization recovers 1-sparse solutions when 0 < p <
1)
Consider the optimization problem

min
α1,...,αm∈R

m∑
i=1

|αi|p

s.t.

m∑
i=1

αi = 1, α ∈ C , (50)

where C is a convex set and p ∈ (0, 1). Suppose that there exists a feasible
solution α∗ ∈ C and

∑
i α

∗
i = 1 such that ∥α∗∥0 = 1. Then, α∗ is strictly

optimal with objective value 1. More precisely, any solution with cardinality
strictly greater than 1 has objective value strictly larger than 1.

A.2.3 NP-hardness Proof

Subset sum problem given in Definition 3 is a decision problem known to be
NP-complete (e.g. [16]). The decision version of the problem in (49) can be
stated as follows: Does there exist a feasible u1? We show that this decision
problem is NP-hard via a polynomial time reduction from the subset sum
problem.

Definition 3 (Subset sum problem) Given a set of integers A, does there
exist a subset AS whose elements sum to z?

Lemma 4 establishes the reduction of the decision version of (49) from the
subset sum problem. The proof is given in the sequel and follows the same
approach used in the proof for the NP-hardness of phase retrieval in [16], with
the main difference being the additional constraints u21k = 1/d, k = 1, . . . , d in
(49). Finally, Lemma 4 concludes the proof of Theorem 2.

Lemma 4 Consider the problem in (49). Let the first d samples of X̃ ∈
R(d+1)×d, denoted X̃D ∈ Rd×d, be any diagonal matrix with −1’s and +1’s on

its diagonal, and let the (d + 1)’st sample be x̃d+1 =
√
d
[
a1 . . . ad

]T
. Then,

the decision version of the resulting problem returns ’yes’ if and only if the
answer for the subset sum problem with A = {a1, . . . , ad} is ‘yes’.
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B Proof of Lemma 1

Proof We will denote the set in (18) as S1 and the set in (19) as S2 to simplify
the notation. We will prove S1 = S2 by showing S1 ⊆ S2 and S2 ⊆ S1.
We first show S1 ⊆ S2. Let us take a point S ∈ S1. This implies that S is a
matrix of the form

t

m∑
j=1

[
uj
1

] [
uj
1

]T
αj = t

m∑
j=1

[
uju

T
j αj ujαj

uTj αj αj

]
=

[
t
∑m

j=1 uju
T
j αj t

∑m
j=1 ujαj

t
∑m

j=1 u
T
j αj t

∑m
j=1 αj

]
(51)

with
∑

j αj ≤ 1 and ∥uj∥2 = 1 for all j. We note that tr(t
∑m

j=1 uju
T
j αj) =

t
∑m

j=1 tr(uju
T
j αj) = t

∑m
j=1 tr(u

T
j uj)αj = t

∑m
j=1 αj ≤ t. This shows that S

satisfies the equality condition in the definition (19). Now, we show that S is

a PSD matrix. Note that each of the rank-1 matrices

[
uj
1

] [
uj
1

]T
is a PSD

matrix and since the coefficients αj ’s and t are nonnegative, it follows that S
is PSD. This proves that S ∈ S2.
We next show S2 ⊆ S1. Let us take a point S ∈ S2. This implies that S is PSD
and tr(S1) = S4 = t0 ≤ t. We show in the Neural Decomposition section that
it is possible to decompose S via the neural decomposition procedure to obtain
the expressions given in (36). It follows that we can write S in the following
form

S =
t0∑m

j=1 d
2
j

[∑m
j=1 uju

T
j d

2
j

∑m
j=1 ujd

2
j∑m

j=1 u
T
j d

2
j

∑m
j=1 d

2
j

]
, (52)

where the scaling factor t0∑m
j=1 d2

j
is to ensure that tr(S1) = S4 = t0 ≤ t. It is

obvious to see that S is in S1 when t0 = t by the definition of S1 given in (18).
When t0 < t, we still have that S is in S1 which can be seen by noting that S1
is defined as the convex hull of rank-1 matrices and the zero matrix. We can
scale all the rank-1 matrices in the convex combination with t0

t and change
the weight of the zero matrix accordingly.
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