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Abstract

Momentum Iterative Hessian Sketch (M-IHS) techniques, a group of solvers for large scale
regularized linear Least Squares (LS) problems, are proposed and analyzed in detail. The
proposed M-IHS techniques are obtained by incorporating Polyak’s heavy ball acceleration
into the Iterative Hessian Sketch algorithm and they provide significant improvements over
the randomized preconditioning techniques. By solving the linear systems arising in the
sub-problems during the iterations approximately, the proposed techniques are capable of
avoiding all matrix decompositions and inversions, which is one of the main advantages over
the alternative solvers such as the Blendenpik and the LSRN. Similar to the Chebyshev semi-
iterations, the M-IHS variants do not use any inner products and eliminate the corresponding
synchronization steps in hierarchical or distributed memory systems, yet the M-IHS converges
faster than the Chebyshev semi-iteration based solvers. Lower bounds on the required sketch
size for various randomized distributions are established through the error analyses. Unlike
the previously proposed approaches to produce a solution approximation, the proposed
M-IHS techniques can use sketch sizes that are proportional to the statistical dimension
which is always smaller than the rank of the coefficient matrix.

Keywords: Tikhonov regularization, ridge regression, random projection, randomized
preconditioning, acceleration
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1. Introduction

We are presenting a group of solvers, named as Momentum Iterative Hessian Sketch,
M-IHS, that is designed for solving large scale linear system of equations in the form of

Ax0 + ω = b, (1)

∗Corresponding author
Email address: ozaslan@usc.edu (Ibrahim K. Ozaslan)

1Mert Pilanci’s work was partially supported by the National Science Foundation under grant IIS-
1838179.

Preprint submitted to Linear Algebra and its Applications August 25, 2023



where A ∈ Rn×d is the given data or coefficient matrix, b is the given measurement vector
contaminated by the noise or computation/discretization error ω, and x0 is the vector desired
to be recovered. Due to contaminated measurements, solutions can differ according to the
constraints imposed on the problem. In this article, we are particularly interested in the
"2-norm regularized Least Squares (LS) solution:

x! = argmin
x

1

2
‖Ax− b‖22 +

λ

2
‖x‖22

︸ ︷︷ ︸
f(x)

, (2)

which is known as Tikhonov regularization or the ridge regression [1]. Problem (2) frequently
arises in various large scale applications of science and engineering. For example, such
regularized problems appear in the discretization of Fredholm integral equations of the first
kind [2]. In those cases, the data matrix might be ill conditioned and the linear system
can be either over-determined or square. When the system is under-determined, although
sparse solutions are recently popularized by compressed sensing [3], the least norm solutions
occupy a fundamental place in statistics applications such as the support vector machines
[4]. Solutions to the problem in both regimes, i.e, n ≥ d and n < d, are often required
as intermediate steps of rather complicated algorithms such as the interior point and the
ADMM that are widely used in machine learning and image processing applications [5, 6, 7].

Throughout the manuscript, it is assumed that a proper estimate for the regularization
parameter λ is available. In the absence of such an estimate, risk estimators such as the
discrepancy principle, unbiased prediction risk estimate, Stein’s unbiased risk estimate, and
generalized cross validation can be directly used to obtain an estimate for the regularization
parameter in the moderate size problems [8]. In large scale problems, these risk estimators
can be adapted for the lower dimensional sub-problems that arise during the iteration of the
first-order iterative solvers [9]. A hybrid scheme that adaptively selects the regularization
parameter along with the iterations is also suitable for the proposed M-IHS solvers. Indeed,
we have developed such a technique that can be found in Chapter 4 of [10], but we will
present it in a separate manuscript due to page length constraints.

The regularized solution in (2) can be obtained by using direct methods such as the
Cholesky decomposition for square A, or the QR decomposition for rectangular A. How-
ever, O(ndmin(n, d)) computational complexity of any full matrix decomposition becomes
prohibitively large as the dimensions increase. For large scale problems, linear dependence
on both dimensions might seem acceptable and can be realizable by using the first-order
iterative solvers that are based on the Krylov subspaces [1]. These methods require only
a few matrix-vector and vector-vector multiplications for each iteration, but the number of
iterations that is needed to reach a high level of accuracy is highly sensitive to the condition
number of the coefficient matrix. For the problem given in (2), the convergence rate of
the first-order iterative solvers based on the Krylov subspace iterations including the con-
jugate gradient (CGLS), LSQR, LSMR, and Chebyshev Semi-iterative (CS) technique is
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characterized by the following inequality:

‖xi − x!‖2 ≤
(√

κ(ATA+ λId)− 1√
κ(ATA+ λId) + 1

)i

‖x1 − x!‖2,

where x! is the optimal solution of (2), x1 is the initial guess, xi is the i-th iterate of the
solver for i < 1, and the condition number κ(·) is defined as the ratio of the largest singular
value to the smallest singular value of its argument [11]. Since for ill conditioned matrices
κ(ATA+ λId) can be large, the rate of convergence may be extremely slow.

The computational complexity of the Krylov subspace-based iterative solvers is O(nd)
for each iteration, hence the total complexity is less than O(ndmin(n, d)) if the number
of iterations can be significantly fewer than min(n, d). However, in the applications such
as big data where A is very large dimensional, the computational complexity is not the
only metric for the feasibility of the algorithms. For example, if the coefficient matrix is
too large to fit in a single working memory and it could be merely stored in a number
of distributed computational nodes, then at least two distributed computations of matrix-
vector multiplications are required at each iteration of algorithms such as CGLS or LSQR
[12, 13]. Therefore, in addition to the computational complexity, the number of iterations
should be counted as an important metric to measure the overall complexity of an algorithm.
One way to reduce the number of iterations in the iterative solvers is to use preconditioning
to transform an ill conditioned problem to a well conditioned one [14]. In the deterministic
settings, finding a low-cost and effective preconditioning matrix is still a challenging task
unless the coefficient matrix has a particular structure [15].

In addition to the number of iterations, the number of inner products in each iteration
also plays an important role in the overall complexity. Each inner product calculation
constitutes a synchronization step in parallel computing and therefore is undesirable for
distributed or hierarchical memory systems [14]. The CS technique can be preferred in this
kind of applications, since it does not use any inner products, and therefore, eliminates some
of the synchronization steps that are required by the techniques such as CG or GMRES.
However, CS technique requires prior information about the ellipsoid that contains all the
eigenvalues of A, which is typically not available in practice [16].

These aforementioned drawbacks of the direct and the iterative methods can be alleviated
using the Random Projection (RP) techniques [17, 18]. These techniques are capable of both
reducing the dimensions and bounding the number of iterations with statistical guarantees,
while they are quite convenient for parallel and distributed computations [19, 20]. There
are two main approaches for the applications of the RP-based techniques to the regularized
LS problem in (2). In the first approach, referred to as the classical sketching, the coeffi-
cient matrix A and the measurement vector b are projected down onto a lower dimensional
(m & n)2 subspace by using a randomly constructed sketching matrix S ∈ Rm×n, to obtain

2Without loss of generality we can assume the linear system is over-determined; otherwise, we can take
the Lagrange dual to obtain an over-determined problem as elaborated later in the text.
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efficiently an ζ-optimal solution with high probability for the cost approximation [21, 22]:

x̃ = argmin
x

1

2
‖SAx− Sb‖22 +

λ

2
‖x‖22, such that f(x̃) ≤ (1 + ζ)f(x!). (3)

For both the sparse and dense systems, in [23], the best known lower bounds on the sketch
size for obtaining an ζ-optimal cost approximation have been derived showing that the sketch
size can be chosen proportional to the statistical dimension sdλ(A) = tr

(
A(ATA+ λId)−1AT

)
.

Although the cost approximation is sufficient for many machine learning problems, the so-
lution approximation which aims to produce solutions that are close to the optimal solution
is a more preferable metric for the problems arisen from, for example, discretization of Fred-
holm integrals [1, 8]. However, as shown in [24], the classical sketching is sub-optimal in
terms of the minimum sketch size for obtaining a solution approximation.

In the second approach of randomized preconditioning, by iteratively solving a number of
low dimensional sub-problems constituted by (SA,∇f(xi)) pairs, algorithms with reasonable
sketch sizes obtain an η-optimal solution approximation x̂ such that

‖x̂− x!‖W ≤ η‖x!‖W , (4)

where W is a positive definite weight matrix. In [25], RP techniques have been proposed to
construct a preconditioning matrix for CG-like algorithms by using the inverse of R factor
in the QR decomposition of the sketched matrix SA. Later, implementation of similar
ideas resulted in Blendenpik and LSRN which have been shown to be faster than some of
the deterministic solvers of LAPACK [26, 27]. To solve the preconditioned problems, as
opposed to Blendenpik which uses LSQR, LSRN uses the CS technique for parallelization
purposes and deduce the prior information about the eigenvalues based on the results of the
random matrix theory. The main drawback of LSRN and Blendenpik is that regardless of
the desired accuracy η, one has to pay the whole cost, O(md2), of a full m× d dimensional
matrix decomposition, which is the dominant term in the computational complexity of these
algorithms. Iterative Hessian Sketch (IHS) proposed in [24] enables the use of the sketched
Hessian as preconditioning matrix in the gradient descent method [28] thereby providing
a reduction in the dominant complexity term O(md2) to O(md). For the IHS, instead
of computing a full decomposition or an inversion, a linear system can be approximately
solved for a pre-determined tolerance. The ability to use this inexact approach becomes
more important in the large scale inverse problems such as 3D imaging [29] where even a
decomposition of m× d-dimensional sketched matrix is infeasible to compute. By using the
preconditioning idea of the IHS in the CG technique, Accelerated IHS (A-IHS) has been
proposed in [28]. Lastly, in [30], it has been showed that if the linear system is strongly
over-determined, then the momentum parameters of the heavy ball method can be robustly
estimated by using Marchenko Pastur Law (MPL) [31]. This analysis results in a prototype
solver M-IHS that we study here in detail.

The statistical lower bounds obtained in the current literature suggest that the sketch
size in randomized preconditioning algorithms can be chosen proportional to the rank of the
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problem, which can be significantly larger than the statistical dimension. Some lower bounds
on the sketch size that are proportional to the statistical dimension have been obtained in
ridge regression [32, 33]. However, these analyses are limited to kernel ridge regression or
under-determined regime where n ≤ d and do not consider the acceleration in the iteration
of the methods.

2. Contributions

In this article, we propose a group of random projection based iterative solvers for large
scale regularized LS problems. As shown by detailed analyses of their convergence be-
haviours, the proposed M-IHS variants can be used for any dimension regimes with signifi-
cant computational savings if the statistical dimension of the problem is sufficiently smaller
than at least one size of the coefficient matrix. Our guarantees, presented in Theorem 1
and Corollary 2, are based on the solution approximation metric given in (4) as opposed to
the results obtained for cost approximation metric given in (3). In Lemma 3, we improved
the known lower bounds on the sketch size of various randomized distribution for obtaining
a pre-determined convergence rate with a constant probability. These guarantees can be
readily extended to any other sketching types by using the Approximate Matrix Multiplica-
tion (AMM) property defined in [34]. When tighter bounds for the AMM property will be
available in the future, the bounds derived in this work can be automatically improved as
well. Additionally, we provide some approximate bounds for the sketch size and the rate
of convergence in Corollary 4 which is remarkably tight as demonstrated through numerical
experiments. Lastly, in Algorithm 6, we extend the idea of LSQR into the linear problems
in the form of ATAx = b which we need to solve during the iterations of all proposed Inexact
M-IHS variants and of the Newton Sketch [7]. Similar to the stability advantage of the LSQR
over the CGLS technique [35], the proposed method solves the system in the above form
without squaring the condition number as opposed to the techniques such as the symmetric
CG and the symmetric Lanczos techniques. In the following link, implementations of the
proposed solvers in MATLAB together with the codes that generate the figures in the article
can be found: https://github.com/ibrahimkurban/M-IHS.

3. The proposed M-IHS solvers for the regularized LS problems

The naive IHS algorithm approximates the Hessian in the Newton method to gain com-
putational savings while solving the Newton sub-systems, and it iteratively minimizes the
quadratic objective function given in (2) by performing the following updates [24]:

xi+1 = argmin
x∈Rd

‖SiA(x− xi)‖22 + λ‖x− xi‖22 + 2〈∇f(xi), x〉. (5)

where the gradient is given by ∇f(x) = AT (Ax − b) + λx. Here, we aim to gain further
computational efficiency and improved convergence rate for the naive IHS technique. We
realized these two goals by incorporating Polyak’s momentum method [36] into the iterations
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in (5) and propose the following Momentum-IHS (M-IHS) updates:

∆xi = argmin
x∈Rd

‖SAx‖22 + λ‖x‖22 + 2
〈
∇f(xi), x

〉
, (6)

xi+1 = xi + αi∆xi + βi

(
xi − xi−1

)
,

where the same sketching matrix S is used for all iterations. For a properly chosen momen-
tum parameters αi and βi, there is no need to change the sketching matrix in the above
iterations unlike the IHS technique. Moreover, the optimal fixed momentum parameters
α and β, that maximize the convergence rate, can be estimated by using the random ma-
trix theory as completely independent of the spectral properties of the coefficient matrix A
[30]. Here, the linear system is assumed to be strongly over-determined, i.e., n + d. By
using the dual formulation, the theory can be straightforwardly extended to the strongly
under-determined case of d + n as follows. A dual of Problem (2) is given by

ν! = argmin
ν∈Rn

1

2
‖ATν‖22 +

λ

2
‖ν‖22 − 〈b, ν〉

︸ ︷︷ ︸
g(ν)

, (7)

with the following relation between the solutions of the primal and dual problems

ν! = (b− Ax!)/λ ⇐⇒ x! = ATν!. (8)

The corresponding M-IHS iterations for the dual problem are:

∆νi = argmin
ν∈Rn

‖SATν‖22 + λ‖ν‖22 + 2
〈
∇g(νi), ν

〉
, (9)

νi+1 = νi + α∆νi + β
(
νi − νi−1

)
,

where ∇g(ν) = (AAT + λI)ν − b and the solution of the primal problem can be obtained
through the relation in (8). We refer to this algorithm as the Dual M-IHS. The convergence
rate of the M-IHS and the Dual M-IHS solvers together with the optimal fixed momentum
parameters are stated in the Theorem 1 below.

Theorem 1. Let A and b be the given data in (1) with singular values σi in descending
order 1 ≤ i ≤ min(n, d), x! ∈ Rd and ν! ∈ Rn are as in (2) and (7), respectively. Let
U1 ∈ Rmax(n,d)×min(n,d) consists of the first n rows of an orthogonal basis for [AT

√
λId]T if

the problem is over-determined, and consists of the first d rows of an orthogonal basis for
[A

√
λIn]T if the problem is under-determined. Let the sketching matrix S ∈ Rm×max(n,d) be

drawn from a distribution D such that

PS∼D
(
‖UT

1 S
TSU1 − UT

1 U1‖2 ≥ ε
)
< δ, ε ∈ (0, 1). (10)

Then, the M-IHS applied on (2) and the Dual M-IHS applied on (7) with the following
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momentum parameters

β! =

(
ε

1 +
√
1− ε2

)2

, α! = (1− β!)
√
1− ε2,

converge to the optimal solutions, x! and ν!, respectively, at the following rate with a prob-
ability of at least (1− δ):

‖xi+1 − x!‖D−1 ≤ ε

1 +
√
1− ε2

‖xi − x!‖D−1 ,

‖νi+1 − ν!‖D−1 ≤ ε

1 +
√
1− ε2

‖νi − ν!‖D−1 ,

where D−1 is the diagonal matrix whose diagonal entries are
√
σ2
i + λ.

Proof. In the following analysis we denote A = UΣV T as the compact SVD with U ∈ Rn×r,
Σ = diag(σ1, . . . , σr) ∈ Rr×r and V ∈ Rd×r where r = min(n, d). To prove the theorem
for M-IHS and Dual M-IHS, we mainly combine the idea of partly exact sketching, that
is proposed in [23], with the analysis used in [30]. We define the diagonal matrix D :=
(Σ2 + λIr)−1/2 and the partly exact sketching matrix S as:

Ŝ =

[
S 0
0 Ir

]
, S ∈ R

m×max(n,d).

The proof for M-IHS. Let

Â =

[
UΣD√
λV D

]
=

[
U1

U2

]
, ÂT Â = Id, b̂ =

[
b
0

]
,

so that U1 consists of the first n rows of an orthogonal basis for [AT
√
λId]T as required

by the condition in (10) of the theorem. To simplify the analysis, the following LS problem
will be used:

y∗ = argmin
y∈Rd

‖Ây − b̂‖22 (11)

which is equivalent to Problem (2) due to the one-to-one mapping y∗ = D−1V Tx(λ). For
Problem (11), the equivalent of M-IHS given in (6) is the following update:

∆yi = argmin
y

‖ŜÂy‖22 − 2〈ÂT (̂b− Âyi), y〉

yi+1 = yi + α∆yi + β(yi − yi−1)

with sketched matrix

ŜÂ =

[
SUΣD√
λV D

]
=

[
SU1

U2

]
.
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Thus, we can examine the following bipartite transformation to find out the convergence
properties of the M-IHS:

[
yi+1 − y∗

yi − y∗

]
=

[
(1 + β)Id − α(ÂT ŜT ŜÂ)−1 −βId

Id 0

]

︸ ︷︷ ︸
T

[
yi − y∗

yi−1 − y∗

]
.

The contraction ratio of the transformation, which is determined by the eigenvalues, can
be found analytically by converting the matrix T into a block diagonal form through the
similarity transformation T = P−1 diag(T1, . . . , Td)P where

Ti :=

[
1 + β − αµi β

1 0

]
, P =

[
Ψ 0
0 Ψ

]
Π, Πi,j =






1 i is odd j = i,
1 i is even j = r + i,
0 otherwise,

ΨΞΨT is the spectral decomposition of (ÂT ŜT ŜÂ)−1, and µi is the ith eigenvalue [30]. The
characteristic polynomials of each block is

u2 − (1 + β − αµi)u+ β = 0, ∀i ∈ [r]. (12)

If the following condition holds

β ≥ (1−√
αµi)

2, ∀i ∈ [r], (13)

then both of the roots are imaginary and both have a magnitude
√
β for all µi’s. In this case,

all linear dynamical systems driven by the above characteristic polynomial will be in the
underdamped regime and the contraction rate of transformation T , through all directions,
not just one of them, will be exactly

√
β. If the condition in (13) is not satisfied for a µi

with i ∈ [r], then the linear dynamical system corresponding to µi will be in the overdamped
regime and the contraction rate in the direction through the eigenvector corresponding to
this overdamped system will be smaller compared to the others. As a result, the overall
algorithm will be slowed down (see [37] for details). If the condition in (10) of Theorem 1
holds,

‖ÂT ŜT ŜÂ− Ir‖2 = ‖UT
1 S

TSU1 + UT
2 U2 − Ir‖2 = ‖UT

1 S
TSU1 − UT

1 U1‖2 ≤ ε,

then, we have the following bounds:

sup
‖v‖2=1

vT ÂT ŜT ŜÂv ≤ 1 + ε and inf
‖v‖2=1

vT ÂT ŜT ŜÂv ≥ 1− ε,

which are equivalent to:

maximize
i∈[r]

µi ≤
1

1− ε
and minimize

i∈[r]
µi ≥

1

1 + ε
.
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Consequently, the condition in (13) can be satisfied for all µi’s by the following choice of β
that minimizes the convergence rate over step size α

√
β∗ = minimize

α

(
max

{
1−

√
α√

1 + ε
,

√
α√

1− ε
− 1

})
=

ε

1 +
√
1− ε2

,

where the minimum is achieved at α∗ = 4(1−ε2)
(
√
1+ε+

√
1−ε)2

= (1− β∗)
√
1− ε2 as claimed.

The proof for the Dual M-IHS. The proof of the under-determined case is parallel to the
over-determined one except for the following modifications. Let

ÂT =

[
V ΣD√
λUD

]
=

[
U1

U2

]
, ÂÂT = In and ŜÂT =

[
SV ΣD√
λUD

]
=

[
SU1

U2

]
, (14)

so that U1 is the first d rows of an orthogonal basis for [A
√
λIn] as required by the theorem.

Similar to M-IHS case, the analysis can be simplified using the following reformulation of
Problem (7)

w∗ = argmin
w∈Rn

=
1

2
‖ÂTw‖22 − 〈DUT b, w〉,

where the solutions of two problems are related through the one-to-one mapping w∗ =
D−1UTν(λ). For this form, the equivalent of Dual M-IHS is

∆wi = argmin
w

‖ŜÂTw‖22 − 2〈DUT b− ÂÂTwi, w〉,

wi+1 = wi + α∆wi + β(wi − wi−1).

Therefore, we can analyze the following bipartite transformation to figure out the conver-
gence properties of the Dual M-IHS

[
wi+1 − w∗

wi − w∗

]
=

[
(1 + β)In − α(ÂŜT ŜÂT )−1 −βIn

In 0

]

︸ ︷︷ ︸
T

[
wi − w∗

wi−1 − w∗

]
.

The rest of the proof can be completed straightforwardly by following the same analysis
steps as in the proof for the M-IHS case.

Note that, Theorem 1 remains valid in unregularized problems where A is full rank, if,
instead of (10), the following condition is satisfied

PS∼D
(
‖UTSTSU − Id‖2 ≥ ε

)
< δ, ε ∈ (0, 1).

When the necessary conditions are met, the number of iterations needed for both algorithms
to reach a certain level of accuracy is stated in the following corollary.
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Corollary 2. For some ε ∈ (0, 1/2) and arbitrary η, if the sketching matrix meets the
condition in (10) and the fixed momentum parameters are chosen as in Theorem 1, then
the number of iterations for the M-IHS and the Dual M-IHS to obtain an η-optimal solution
approximation in "2-norm is upper bounded by

N =

⌈
log(η) log(C)

log(ε)− log(1 +
√
1− ε2)

⌉

where C =
√

κ(ATA+ λId) for M-IHS and C = κ(A)
√
κ(AAT + λIn) for Dual M-IHS.

Corollary 2 is an immediate result of Theorem 1. To satisfy the condition in (10), a
set of cases for the sketching matrix S are given in Lemma 3. We note that the statistical
dimension of matrix A is defined as sdλ(A) =

∑min(n,d)
i=1 σ2

i /(σ
2
i + λ).

Lemma 3. If the sketching matrix S is chosen in one of the following cases, the condition
in (10) of Theorem 1 is satisfied.

i. S is a sparse subspace embedding [20] with single nonzero element in each column,
with a sketch size

m = Ω
(
sdλ(A)

2/(ε2δ)
)

where Ω(·) notation is defined as a(n) = Ω(b(n)), if there exists two integers k and
n0 such that ∀n > n0, a(n) ≥ k b(n). For this case, SA is computable in O(nnz(A))
operations.

ii. S is a sparse subspace embedding with

s = Ω(logα(sdλ(A)/δ)/ε)

non-zero elements in each column where α > 2, δ < 1/2, ε < 1/2, [38, 39], with a
sketch size

m = Ω(α sdλ(A) log(sdλ(A)/δ)/ε
2).

For this case, SA is computable in O(snnz(A)) operations.

iii. S is a SRHT sketching matrix [34, 24] with a sketch size

m = Ω
(
(sdλ(A) + log(1/εδ)) log(sdλ(A)/δ)/ε

2
)
.

For this case, SA is computable in O(nd log(m)) operations.

iv. S is a Sub-Gaussian sketching matrix [22, 34] with a sketch size

m = Ω(sdλ(A)/ε
2).

For this case, SA is computable in O(ndm) operations.

Proof. The following identities will be used on U1 where U,Σ, and D are defined in the proof
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of Theorem 1:

‖U1‖2F = ‖UΣD‖2F = ‖Σ(Σ2 + λIr)
−1/2‖2F =

r∑

i=1

σ2
i

σ2
i + λ

= sdλ(A),

and ‖U1‖22 = σ2
1

σ2
1
+λ

≤ 1 for any λ. If the sketch matrix S is drawn from a randomized

distribution D over matrices Rm×n, then by using the Approximate Matrix Property (AMM)
which is given below, it will be proven that the condition in (10) can be met with a desired
level of probability.

As proven in [34], if a distribution D over S ∈ Rm×n has the (ε, δ, 2k, ")-OSE moment
property for some δ < 1/2 and " ≥ 2, then it has (ε, δ, k)-AMM Property for any A,B, i.e.,

PS∼D

(
‖ATSTSB − ATB‖2 > ε

√(
‖A‖22 +

‖A‖2F
k

)(
‖B‖22 +

‖B‖2F
k

))
< δ. (15)

The definition of the OSE-moment property can be found in [34]. As it will be detailed
next, using the AMM property in (15), the sketch sizes in the statement of Lemma 3 can
be found relative to the embedding size k to satisfy the condition in (10) of Theorem 1.

For case (i) of Lemma 3, Count Sketch with a single nonzero element in each column
and size m ≥ 2/(ε′2δ) has (ε′, δ, 2)-JL moment property [40]. JL-Moment Property can be
found in Definition 6.1 of [38]. By Theorem 6.2 in [38]:

‖U1S
TSU1 − UT

1 U1‖F < 3ε′‖U1‖2F = 3ε′sdλ(A) ≤ ε

for ε′ = ε/(3sdλ(A)). So, condition in (10) holds with probability at least 1 − δ, if m =
O(sdλ(A)2/(ε2δ)).

For case (ii) of Lemma 3, combining Theorem 4.2 of [41] and Remark 2 of [34] implies
that any sketch matrix drawn from an OSNAP [39] with the conditions given in case (ii)
of Lemma 3 satisfies the (ε′, δ, k, log(k/δ))-OSE moment property thus the (ε′, δ, k/2)-AMM
Property. Setting A = B = U1 and k = sdλ(A)/2 in (15) gives:

‖UT
1 S

TSU1 − UT
1 U1‖2 ≤ ε′(‖U1‖22 + 2) ≤ 3ε′ ≤ ε

with probability of at least (1− δ).

Remark 1. Based on the lower bounds established for any OSE in [42], the Conjecture
14 in [39] states that any OSNAP with m = Ω((k + log(1/δ))/ε2) and s = Ω(log(k/δ)/ε)
have the (ε, δ, k, ")-OSE moment property for " = Θ(log(k/δ)), an even integer. If this
conjecture is proved, then by the AMM property in (15), the condition in (10) can be satisfied
with probability at least (1 − δ) by using an OSNAP matrix with size m = Ω((sdλ(A) +
log(1/δ))/ε2) and sparsity s = Ω(log(sdλ(A)/δ)/ε).

For case (iii) of Lemma 3, by Theorem 9 of [34], SRHT with the sketch size given in
case (iii) has the (ε′, δ, 2sdλ(A), log(sdλ(A)/δ))-OSE moment property and thus it provides
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(ε′, δ, sdλ(A))-AMM property. Again, setting A = B = U1 and k = sdλ(A) in (15) produces
the desired result.

For case (iv) of Lemma 3, the Subgaussian matrices having entries with mean zero and
variance 1/m satisfy the JL Lemma [17] with optimal sketch size [38]. Also, they have the
(ε/2, δ,Θ(log(1/δ)))-JL moment property [43]. Thus by Lemma 4 of [34] such matrices have
(ε, δ, k,Θ(k + log(1/δ)))-OSE moment property for δ < 9−k, which means m = Ω(k/ε2).
Again, by setting A = B = U1 and k = sdλ(A) in (15) produces the desired result.

Lemma 3 suggests that in order to satisfy the condition in Theorem 1, the sketch size can
be chosen proportional to the statistical dimension of the coefficient matrix which can be
considerably smaller than its rank. Moreover, to obtain a solution approximation, the second
condition in Lemma 11 of [23] is not a requirement, hence we obtained better results for the
sparse subspace embeddings in the cases of (i) and (ii) of Lemma 3. In the following corollary,
we obtained substantially simplified empirical versions of the convergence rate, momentum
parameters and required sketch size by using the MPL and approximating the filtering
coefficients of Tikhonov regularization with binary coefficients. Corollary 4 suggests that
the ratio between the statistical dimension and the sketch size determines the convergence
rate of the proposed algorithms, which interestingly seems valid even for the sketch matrices
with a single non-zero element in each column as we demonstrate in Figure 1(b). Moreover,
an empirical algorithm to estimate statistical dimension sdλ(A) using a Hutchinson-like
estimator is proposed in Section 3.3. As demonstrated through numerical experiments in
Section 4 (in particular Figure 7), the complexity of estimating sdλ(A) using the proposed
approach is insignificant compared to the iteration complexity of the M-IHS algorithm.

Corollary 4. If the entries of the sketching matrix are independent, zero mean, unit vari-
ance with bounded higher order moments, and the Truncated SVD regularization with trun-
cation parameter 0sdλ(A)1 is used, then the M-IHS and the Dual M-IHS with the following
momentum parameters

β =
sdλ(A)

m
, α = (1− β)2

converge to the optimal solutions x! and ν!, respectively, with a convergence rate of
√
β as

m → ∞ while the ratio sdλ(A)/m remains constant. Any sketch size m > sdλ(A) can be
chosen to obtain an η-optimal solution approximation in most log(η)/ log(

√
β) iterations.

Proof. Consider the regularized LS solution with parameter λ and the Truncated SVD so-
lution with parameter 0sdλ(A)1:

x! =
r∑

i=1

σ2
i

σ2
i + λ

uT
i b

σi
vi and x† =

)sdλ(A)*∑

i=1

uT
i b

σi
vi (16)

where ui’s and vi’s are columns of U and V matrices in the SVD. The Tikhonov regularization
with the closed form solution is preferred in practice to avoid the high computational cost of

the SVD. The filtering coefficients of the Tikhonov regularization, σ2
i

σ2
i +λ

, become very close
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to the binary filtering coefficients of the TSVD, as the decay rate of the singular values of
A increases. In these cases, x! and x† in (16) are very close to each other (Section 4 and 5
of [44]). Thereby, the diagonal matrix ΣD which is used in the proof of Lemma 3 can be
approximated by the diagonal matrix Π where

Πii =

{
1 if i ≤ sdλ(A) ≤ r
0 otherwise

,

which is equivalent to replacing the Tikhonov coefficients by the binary coefficients. Then,
we have the following close approximation:

(
ÂT ŜT ŜÂ

)−1

=
(
DΣUTSTSUΣD + λD2

)−1

≈
(
Π(SU)T (SU)Π+ Ir − Π

)−1
=

[
STS 0
0 I(r−sdλ(A))

]−1

,

where S = SUΠ ∈ Rm×sdλ(A) has the same distribution as S, since UΠ is an orthonormal
transformation. By the MPL, the minimum and the maximum eigenvalues of this approxi-
mation converge to (1±

√
sdλ(A)/m)−2 as m → ∞ and while the ratio sdλ(A)/m converges

to a constant [31]. The rest of the proof follows from the analysis given in the proof of
Theorem 1.
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(a) Dense problem, SRHT sketch via DCT
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(b) Sparse problem, Count sketch

Figure 1: Comparison of the theoretical rate given in Corollary 4 and the empirical convergence rate. The
lines with different markers show the theoretical convergence rate for different sketch sizes. Both the exact
and the inexact (given in Algorithm 1) versions of the M-IHS were run 32 times and the result of each run
is plotted as a separate line. Except for a small degradation in the dense case, setting the forcing term to a
small constant such as εsub = 0.1 is sufficient for the inexact scheme to achieve the same rate as the exact
version in these experiments.

Although the MPL provides bounds for the singular values of the sketching matrix S
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in the asymptotic regime, i.e., as m → ∞; these bounds become very good estimators
of the actual bounds when m takes finite values as demonstrated in Figure 1. In Figure
1(a), A ∈ R32768×1000 with κ(A) = 108 was generated as described in Section 4.1. In
Figure 1(b), A ∈ R24336×1296 was generated by using sprand command of MATLAB. We
first created a sparse matrix with size Ã ∈ R20×6 and sparsity of 15%, then the final form
was obtain by taking A = Ã⊗4 and deleting the all-zero rows. The final form of A has a
sparsity ratio of 0.1% and the condition number of κ(A) = 107. The noise level was set
to 1% and the regularization parameter λ that minimizes the error ‖x0 − x(λ)‖2 was used
in both experiments. The resulting statistical dimensions were 119 and 410, respectively.
The rate of

√
β in Corollary 4 creates a remarkable fit to the numerical convergence rate

of the M-IHS variants when the momentum parameters given in Corollary 4 are used even
for the Tikhonov regularization. This is because the sigmoid-like filtering coefficients in the
Tikhonov regularization can be thought of as the smoothed version of the binary coefficients
in the TSVD solution and therefore the binary coefficients constitute a good approximation
for the filtering coefficients of the Tikhonov regularization.

Remark 2. The momentum parameters given in Corollary 4 maximizes the convergence
rate when the statistical dimension is known. If sdλ(A) is overestimated and thus β is
chosen larger than the ratio sdλ(A)/m and α = (1− β)2, then the convergence rate is still√
β since all modes of the dynamical system driven by the characteristic equation given

in (12) will be still in the under-damped regime. In Section 3.3, we propose an empirical
algorithm to estimate sdλ(A).

3.1. Efficient M-IHS sub-solvers

In practice, the M-IHS and the Dual M-IHS eliminate the dominant term O(md2) in
the complexity expression of well known solvers such as the Blendenpik and the LSRN by
approximately solving the lower dimensional linear systems in (6) and (9) avoiding matrix
decompositions or inversions. This inexact sub-solver approach provides a trade-off op-
portunity between the computational complexity and the convergence rate, that is highly
desirable in very large dimensional problems. Unfortunately, such a trade-off is not possible
for the Blendenpik and the LSRN techniques which require a full matrix decomposition of
the sketched matrix. Inexact sub-solvers have been known to be a good heuristic way to
create this trade-off and they are widely used in the algorithms that are based on the New-
ton method to solve the large scale normal equations [45]. In these inexact (or truncated)
Newton methods, inner iterations are terminated at the moment that the relative residual
error is lower than an iteration-dependent threshold, named as the forcing terms [46]. In
the literature, there are various techniques to choose these forcing terms that guarantee
a global convergence [47], but the number of iterations suggested by these techniques are
significantly higher than the total number of iterations used in practice. Therefore, in this
work the heuristic constant threshold εsub, that checks the relative residual error of the linear
system, is used [48].

Efficient but approximate solutions to the sub-problems in (6) and (9) can be obtained
by Krylov subspace based first-order methods. However, LSQR-like solvers that are adapted
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for the normal equations would require computations of 4 matrix-vector multiplications per
iteration. On the other hand, due to the explicit calculation of (SA)T (SA)z, the symmetric
CG, that would require only 2 matrix-vector multiplications, might be unstable for the
ill-conditioned problems [35]. Therefore, in Section 3.5, we propose a stable sub-solver,
referred to as AAb Solver, which is particularly designed for the problems in the form of
ATAx = b. The AAb Solver is based on the Golub Kahan Bidiagonalization and it uses
a similar approach that the LSQR uses on the LS problem. The inexact versions of the
M-IHS and Dual M-IHS that use AAb Solver are given in Algorithm 1 and Algorithm 2,
where RP fun represents the function that generates the desired sketched matrix such that
E
[
STS

]
= Im whose implementation details can be found in the relevant references in

Lemma 3. Number of operations required at each step is stated at the right most column of
the algorithms, where C(·) represents the complexity of constructing the sketching matrix
as given in Lemma 3. Setting the forcing term εsub, for instance, to 0.1 for all iterations is
enough for the inexact M-IHS variants to converge at the same rate

√
β as the exact versions

as demonstrated in Figure 1.

Algorithm 1 M-IHS (for n ≥ d)

1: Input : A, b, m, λ, N, x1, sdλ(A), εsub complexity

2: SA = RP fun(A,m) C(m,n, d)

3: β = sdλ(A)/m O(1)

4: α = (1− β)2 O(1)

5: for i = 1 : N do

6: gi = AT (b− Axi)− λxi 4nd+ 3d

7: ∆xi = AAb Solver(SA, gi, λ, εsub) O(md)

8: xi+1 = xi + α∆xi + β(xi − xi−1) 5d

9: end for

3.2. Two-stage sketching for the M-IHS variants

Lemma 3 suggests that if the statistical dimension is several times smaller than the
dimensions of A, then for the M-IHS techniques, it is possible to choose a substantially
smaller sketch size than min(n, d). If this is the case, then the quadratic objective functions
in (6) and (9) become strongly under-determined problems, which makes it possible to
approximate the Hessian of the objective functions one more time by taking their convex
dual as it has been done in the Dual M-IHS. This approach is similar to the approach where
the problems in (6) and (9) are approximately solved by using the AAb Solver, with an
additional dimension reduction. As a result of two Hessian sketching, the linear sub-problem
whose dimensions are reduced from both sides can be efficiently solved by the AAb Solver

for a pre-determined tolerance as before. For the details of this two-step approach, consider
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Algorithm 2 Dual M-IHS (for n ≤ d)

1: Input : A, b, m, λ, N, sdλ(A), εsub complexity

2: SAT = RP fun(AT ,m) C(m,n, d)

3: β = sdλ(A)/m O(1)

4: α = (1− β)2 O(1)

5: ν1 = 0 O(1)

6: for i = 1 : N do

7: gi = b− AATνi − λνi 4nd+ 3n

8: ∆νi = AAb Solver(SAT , gi, λ, εsub) O(mn)

9: νi+1 = νi + α∆νi + β(νi − νi−1) 5n

10: end for

11: xN+1 = ATνN+1 2nd

the following dual of the sub-problem in (6)

zi,! = argmin
z∈Rm

1

2
‖ATST z +∇f(xi)‖22 +

λ

2
‖z‖22

︸ ︷︷ ︸
h(z,xi)

, (17)

where ∇zh(z, x) = SA(ATST z +∇f(x)) + λz. Problem (17) is a strongly over-determined
if m & min(n, d). Hence, it can be approximately solved by the M-IHS updates as

∆zi,j = argmin
z∈Rm

‖WATST z‖22 + λ‖z‖22 + 2
〈
∇zh(z

i,j , xi), z
〉
, (18)

zi,j+1 = zi,j + α2∆zi,j + β2

(
zi,j − zi,j−1

)
.

After M iterations, the solution of (6) can be recovered by using the relation in (8) as
∆xi = (∇f(xi) − ATST zi,M)/λ. The same strategy can be applied on the sub-problem in
(9) by replacing SA with SAT and ∇f(xi) with ∇g(νi). The resulting algorithms, referred
to as Primal Dual M-IHS, are given in Algorithm 3 and Algorithm 4, respectively.

The primal-dual idea presented here is first suggested by Zhang et al. in [28]. They
used the A-IHS technique to solve the sub-problems that arise during the iterations of the
Accelerated Iterative Dual Random Projection (A-IDRP) which is a dual version of the
A-IHS. However, since both of the A-IHS and the A-IDRP are based on the CG technique,
the convergence rate of the proposed A-IHS, A-IDRP and the primal dual algorithm called
as Accelerated Iterative Primal Dual Sketch (A-IPDS) are all degraded in the LS problems
with high condition numbers due to the instability issue of the symmetric CG technique
[35]. Even if the regularization is used, still the performance of the solvers proposed in [28]
are considerably deteriorated compared to the other randomized preconditioning techniques
as shown in Section 4. Further, applying the preconditioning idea of IHS to the stable
techniques such as the LSQR that are adapted for the LS problem is not so efficient as the
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Algorithm 3 Primal Dual M-IHS (for n ≤ d)

1: Input : A, b, m1, m2, λ, N, M, sdλ(A), εsub complexity

2: SAT = RP fun(AT ,m1) C(m1, n, d)

3: WAST = RP fun(SAT ,m2) C(m1,m2, n)

4: β' = sdλ(A)/m', " = 1, 2 O(1)

5: α' = (1− β')2, " = 1, 2 O(1)

6: ν1 = 0, z1,1 = 0 O(1)

7: for i = 1 : N do

8: bi = b− AATνi − λνi 4nd+ 3n

9: for j = 1 : M do

10: gi,j = SAT (bi − AST zi,j)− λzi,j 4nm1 + 3m1

11: ∆zi,j = AAb Solver(WAST , gi,j, λ, εsub) O(m1m2)

12: zi,j+1 = zi,j + α2∆zi,j + β2(zi,j − zi,j−1) 5m1

13: end for

14: ∆νi = (bi − AST zi,M+1)/λ, zi+1,1 = zi,M+1 2nm1 + 2n

15: νi+1 = νi + α1∆νi + β1(νi − νi−1) 5n

16: end for

17: xN+1 = ATνN+1 2nd

Algorithm 4 Primal Dual M-IHS (for n ≥ d)

1: Input: A, b, m1, m2, N,M, λ, x1, sdλ(A), εsub complexity

2: SA = RP fun(A,m1) C(m1, n, d)

3: WATST = RP fun((SA)T ,m2) C(m1,m2, d)

4: β' = sdλ(A)/m', " = 1, 2 O(1)

5: α' = (1− β')2, " = 1, 2 O(1)

6: z1,1 = z1,0 = 0 O(1)

7: for i = 1 : N do

8: bi = AT (b− Axi)− λxi 4nd+ 3d

9: for j = 1 : M do

10: gi,j = SA(bi − ATST zi,j)− λzi,j 4dm1 + 3m1

11: ∆zi,j = AAb Solver(WATST , gi,j, λ, εsub) O(m1m2)

12: zi,j+1 = zi,j + α2∆zi,j + β2(zi,j − zi,j−1) 5m1

13: end for

14: ∆xi = (bi − ATST zi,M+1)/λ, zi+1,1 = zi,M+1 2dm1 + 2d

15: xi+1 = xi + α1∆xi + β1(xi − xi−1) 5d

16: end for
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M-IHS variants, because they require two preconditioning systems to be solved per iteration.
The computational saving when we apply a second dimension reduction as in the Primal

Dual M-IHS may not be significant due to the second gradient computations in Line 10 of the
given algorithms, but the lower dimensional sub-problems that we obtain at the end of the
second sketching can be used to estimate several parameters including the regularization
parameter itself, if it is unknown. As we have shown in [10], such two-stage sketching
approach is particularly effective to estimate the unknown regularization parameter when
the coefficient matrix is square or close to be square.

The Primal Dual M-IHS techniques are extensions of the inexact schemes. Therefore,
their convergence rates depend on their forcing terms that are used to stop the inner iter-
ations [47]. In [28], an upper bound for the error of the primal dual updates is proposed.
However, as detailed in Section Appendix A, there are several inaccuracies in the devel-
opment of the bound. Therefore, finding a provably valid lower bound on the number of
inner loop iterations, that guarantee a certain rate of convergence at the main loop, is still
an open problem for the primal dual algorithms.

3.3. Estimation of the statistical dimension

The statistical dimension sdλ(A) in Algorithms 1, 2, 3 and 4 can be estimated by using
a Hutchinson-like randomized trace estimator [49]. Alternatively, sdλ(A) can be estimated
by using the algorithm proposed in [23] within a constant factor in nnz(A) time with a
constant probability, if sdλ(A) ≤ ξ where:

ξ = min{n, d, 5(n+ d)1/3/poly(log(n+ d))6}.

However, due to the third order root and the division by typically higher than a sixth order
polynomial, ξ becomes very small and the proposed algorithm in [23] can only be used when
the singular values of A decay severely/exponentially. Therefore, we preferred to use the
heuristic trace estimator in Algorithm 5, where the input matrix SA can be replaced with
SAT or even with WATST and WAST according to the requirements of the algorithm used.
Any estimator in [49] can be substituted for the Hutchinson estimator and the number of
samples T can be chosen accordingly. In the conducted experiments with various singular
value profiles, a small sample size such as 2 and εtr = 0.5 was sufficient to obtain satisfactory
estimates for sdλ(A) used in Corollary 4. Note that, as long as sdλ(A) is overestimated, the
convergence rates of the proposed algorithms will be strictly controlled by β as in Corollary 4.

3.4. Complexity analyses of the proposed algorithms

The iterations of both the exact and inexact M-IHS and Dual M-IHS consist of 4 stages
with the computational complexities given in Table 1 where T is the number of samples used
in Hutchinson-like estimators, κ(λ) is the condition number of ATA + λI, r = min(n, d),
and C(·) is the complexity of generating the sketched matrix which is noted in Lemma 3.
For the proposed techniques, sketch size m can be chosen proportional to the statistical
dimension sdλ(A) which is always smaller than r. We assumed that the sub-problems in
(6) and (9) are solved by using the QR decomposition for the exact schemes. The tolerance
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Algorithm 5 Inexact Hutchinson Trace Estimator

1: Input: SA ∈ Rm×d, λ, T, εtr complexity
2: v' = {−1,+1}d, " = 1, . . . , T O(Td)
3: τ = 0 O(1)
4: for i = 1:T do
5: zi = AAb Solver(SA, vi,λ, εtr) O(md)
6: τ = τ + λ〈vi, zi〉 2d
7: end for
8: Output: ŝdλ = d− τ/T O(1)

parameters εtr and εsub, that are used to terminate the sub-solvers, are typically chosen
around 0.5 or 0.1 as noted in Sections 3.1 and 3.3. The proposed techniques provide, in

Table 1: Computational complexity of each stage in the M-IHS techniques

Stage Exact schemes Inexact schemes
generation of SA or SAT C(n, d, sdλ(A)) C(n, d, sdλ(A))
QR (R− factor only) O(rsdλ(A)2) N.A.
sdλ(A) estimation O(T sdλ(A)2) O(T

√
κ(λ) log(ε−1

tr )sdλ(A)r)
1 iteration O(nd+ sdλ(A)2) O(nd+

√
κ(λ) log(ε−1

sub)sdλ(A)r)

addition to several others as described earlier, two major computational advantages over
the current randomized preconditioning solvers: the first is the capability to use the sketch
sizes that are smaller than r, and the second is the ability of avoiding the complexity of the
QR step. In the inexact M-IHS variants, the cubic complexity O(min(mr2, rm2)) of matrix
decomposition or inversion are avoided by solving sub-problems in each iteration via Krylov
subspace-based solvers. Although solving these sub-problems iteratively incur a complexity
of O(

√
κ(λ)mr), the overall complexity can be reduced significantly in large scale problems

where the dimensions n, d and hence r,m can be considerably higher than the condition
number κ(λ). For the applications where m grows larger, this saving becomes even more
critical as shown in Section 4.5. The memory space required by all the above techniques
is O(sdλ(A)r). In Table 1, it is assumed that A is a dense matrix. For those cases where
A is sparse, further computational savings can be achieved for the proposed techniques. In
the following Table 2, the overall computational complexities of the algorithms to obtain an
η−optimal solution approximation are given for both dense and sparse A’s. In Table 23, we
assumed that the SRHT sketch matrices are used for a dense A while the sparse subspace
embeddings with s nonzero entry in each column are used for a sparse A with nnz(A) number
of nonzero entries. Depending on the type of choice of the sketching used, the complexity of
the proposed techniques vary significantly. For dense coefficient matrices while the SRHT

3Note that for sparse A, the QR algorithm that is based on Givens rotation does not provide significant
complexity reduction in theory since sequentially applied Givens rotation causes fill-in in the data matrix.
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Table 2: Overall computational complexity against baselines

Dense A Sparse A

Inex. M-IHS O
(

nd log(sdλ(A)) + log
(

η−1
)

(

nd+
√

κ(λ)sdλ(A)r
))

O
(

nnz(A) + log(η−1)
(

nnz(A) +
√

κ(λ)sdλ(A)r
))

Exact M-IHS O
(

nd log(sdλ(A)) + rsdλ(A)2 + log
(

η−1
)

nd
)

O
(

nnz(A) + rsdλ(A)2 + log
(

η−1
)

nnz(A)
)

Blendenpik O
(

nd log(r) + r3 + log
(

η−1
)

nd
)

O
(

nd log(r) + r3 + log
(

η−1
)

nnz(A)
)

LSQR/CG O
(

√

κ(λ) log(η−1)nd
)

O
(

√

κ(λ) log
(

η−1
)

nnz(A)
)

QR O(ndr) O(ndr)

matrices has lower run time in sequential environments, Gaussian matrices would be more
efficient in parallel computing. If the coefficient matrix is sparse, then the data oblivious
sketching types such as OSNAP or CountSketch matrices would be effective choices with
run time of O(s nnz(A)) where s is proportional to log(sdλ(A)) as noted in Lemma 3. The
proposed techniques can be still used even if the coefficient matrix is an operator, in this
case Gaussian or sparse embeddings can be utilized. If the coefficient matrix is sparse or
an operator that allows fast matrix-vector computations, then both the exact and inexact
schemes are automatically sped up due to the saving in the gradient computation. For
instance, in the sparse case, complexity of the gradient computation is reduced from O(nd)
to O(nnz(A)) as shown in Table 2.

In a similar manner, the complexity of each stage in the Primal Dual M-IHS variants is
given in Table 3. Here, M denote the number of inner iterations, and both sketch sizem1 and

Table 3: Computational complexity of each stage in the Primal Dual M-IHS techniques

Stage Exact schemes Inexact schemes
generation of WAST C(n, d, sdλ(A)) + C(r, sdλ(A), sdλ(A)) C(n, d, sdλ(A)) + C(r, sdλ(A), sdλ(A))
QR or SVD O(sd3

λ(A)) N.A.

sdλ(A) estimation O(T sd2
λ(A)) O

(

T
√

κ(λ) log(ε−1

tr )sd2
λ(A)

)

1 outer iteration O
(

nd+M(rsdλ(A) + sd2
λ(A))

)

O
(

nd+Msdλ(A)
(

r +
√

κ(λ) log(ε−1

sub
)sdλ(A)

))

m2 can be chosen proportional to the statistical dimension sdλ(A), e.g., m1 = m2 = 2sdλ(A)
as demonstrated in Figure 5. Unless Msdλ(A) & r, the Primal Dual M-IHS does not
provide significant saving over the M-IHS or the Dual M-IHS. However, when n and d scale
similar and the ratio sdλ(A)/r is very small, if the decomposition of the sketched matrix is
required for parameter estimation purpose as discussed earlier (see Chapter 4 of [10]), then
due to the decomposition of m2×m1-dimensional doubly sketched matrix, the Primal Dual

M-IHS variants require far fewer operations then any exact schemes which need to compute
the decomposition of r × m1 dimensional sketched matrix. Such conditions are prevalent,
for example, in image de-blurring or seismic travel-time tomography problems [50]. The
memory space required by Primal Dual M-IHS techniques is O(sdλ(A)r + sd2

λ(A)).
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3.5. A solver for linear systems in the form of ATAx = b

The linear sub-problems in the form of (ATA + λI)x = b, whose solutions are required
by all four of the proposed M-IHS variants, can be approximately solved by using the bidiag2
procedure described in [35], which produces an upper bidiagonal matrix as:

P T
k AVk = Rk =





ρ1 θ2
. . . . . .

ρk−1 θk
ρk




∈ R

k×k,

where Pk ∈ Rn×k, Vk ∈ Rd×k and P T
k Pk = V T

k Vk = Ik. The upper bidiagonal decomposition
Rk is computed by using the Lanczos-like three term recurrence:

AVk = PkRk

ATPk = VkR
T
k + θk+1v

k+1eTk
=⇒

Av1 = ρ1p
1,

ATpj = ρjv
j + θj+1v

j+1 j ≤ k,

Avj = θjp
j−1 + ρjp

j, j ≤ k,

where θj’s and ρj’s are chosen so that ‖vj‖2 = ‖pj‖2 = 1, respectively. Note that Pk and Vk

are not needed to be orthogonal in AAb Solver, therefore we do not need any reorthogonal-
ization steps. Unlike the LSQR, we choose θ1v1 = b with θ1 = ‖b‖2 so that the columns of
the matrix Vk constitute an orthonormal basis for the k-th order Krylov Subspace:

span{v1, . . . , vk} = Kk(A
TA, b) = Kk(A

TA+ µId, b), ∀µ ∈ R+.

Since the Krylov Subspace is invariant under a constant shift, regularization does not affect
this property. In the k-th iteration of the proposed AAb Solver, let the solution estimate
of the linear system be xk = Vkyk for some vector yk ∈ Rk, i.e., xk ∈ Kk(ATA, b), then we
have (ATA+ λId)Vkyk = b which implies

Rky
k = R−T

k V T
k b

(a)
= θ1R

−T
k e1,

where (a) is due to the choice of v1 and Rk is obtained by applying a sequence of Givens rota-
tion on [RT

k

√
λIk]T in order to eliminate the sub-diagonal elements due to the regularization

[51]. One instance of this elimination procedure is





ρk θk+1

0 ρk+1

0 0
0

√
λ



→





ρk ckθk+1

0 ρk+1

0 0
0 λk+1



→





ρk θk+1

0 ρk+1

0 0
0 0




next−−−−−−→

iteration





ρk+1 θk+2

0 ρk+2

0 0
0

√
λ



 ,

where ck = ρk/ρk, sk = λk/ρk, θk+1 = ckθk+1, λ2
k+1 = λ+(skθk+1)

2 and ρk+1 =
√

ρ2k+1 + λ2
k+1.

Since Rk is an upper bidiagonal matrix, the inverse always exists and fk := R−T
k e1 can be
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computed analytically as:

φ1 =
θ1
ρ1

and φk = −φk−1
θk
ρk

where fk = [φ1, . . . ,φk]
T . (19)

Furthermore, the solution at the k-th iteration, xk = VkR
−1
k fk, can be obtain without

computing any inversions by using the forward substitution. Define Dk = VkR
−1
k :

[Dk−1, dk]

[
Rk−1 ek−1θk
0 ρk

]
= [Vk−1, vk]

Dk−1Rk−1 = Vk−1

θkdk−1 + ρkdk = vk






dk = (vk − θkdk−1)/ρk
xk = xk−1 + φkdk,

and the relative residual error that will be used as a stopping criterion can be found as:

‖ATAxk + λxk − b‖22 = ‖ATAVky
k + λVky

k − b‖22 = ‖ATPkRky
k − b‖22

= ‖(VkR
T
k + θk+1v

k+1eTk )Rky
k − b‖22

(i)
= ‖RT

kRky
k − V T

k b‖22 + ‖θk+1v
k+1eTkRky

k − (I − VkV
T
k )b‖22

= |φkθk+1| = |φk+1ρk+1|.

The first norm in (i) is zero since the linear system is always consistent. The second term
in the second norm is also zero, since b ∈ span(Vk) by the initial choice of θ1v1 = b. By
definition, fk = Rkyk gives the final results. The overall algorithm is given in Algorithm 6.
The AAb Solver is also a Krylov subspace method, therefore, it finds the solution in at
most min(n, d,m) iterations in the exact arithmetic, but far fewer number of iterations is
sufficient for our purpose.

Efficient solutions for linear systems in the form of (A+λI)x = b for a symmetric matrix
or (ATA + λI)x = b for a rectangular matrix have been well studied subject. In the first
case, Lanczos tridiagonalization algorithm can be used for deriving a stable solver [52]. In
the second case, which is our main concern, if the lower bidiagonalization processes (bidiag1
in [35]) is used such as in [53], then a tridiagonal system in the form of BT

k Bkyk = θ1e1 must
be solved where Bk ∈ Rk+1×k is a lower bidiagonal matrix. This system can be solved by
first eliminating the lower diagonal elements in the tridiagonal matrix BT

k Bk and then by
using forward substitution. However, the condition number of BT

k Bk is the square of the
condition number of Bk, and thus, increases the instability of the operations in the inexact
arithmetic. Therefore, in the proposed AAb Solver, we use upper bidiagonalization process
to solve a tridiagonal system in the form of RT

kRkyk = θ1e1. The major advantage of this
form over the one obtained by lower bidiagonal matrix Bk is that R−T

k e1 can be calculated
analytically as in (19). Then the solution yk can be obtained via forward substitution. In
this way, we avoid both squaring the condition number and the elimination process of the
lower diagonal entries. As a result, we obtain a solver with better stability properties and
with slightly lower computational requirements.
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Algorithm 6 AAb Solver (for problems in the form of (ATA+ λI)x = b)

1: Input: A ∈ Rm×n, b,λ, ε ! choose ρ and θ to make ‖p‖2 = ‖v‖2 = 1 complexity
2: θ1v = b 3n
3: ρp = Av 2mn+ 3m
4:

5: ρ̄ =
√

ρ2 + λ, c = ρ/ρ̄, s =
√

λ/ρ̄, φ = θ1/ρ̄, t = ∞ O(1)
6: d = v/ρ̄ n
7: x = φd n
8: while t ≥ ε do
9: θv := ATp− ρv 2mn+ 5n
10: ρp := Av − θp 2mn+ 5m
11:

12: λ̄2 := λ+ (sθ)2, θ̄ = cθ O(1)

13: ρ̄ :=
√

ρ2 + λ̄2, c = ρ/ρ̄, s = λ̄/ρ̄ O(1)
14:

15: d := (v − θ̄d)/ρ̄ 3m
16: φ := −φθ̄/ρ̄ O(1)
17: x := x+ φd 2n
18: t = |φρ̄|/θ1 O(1)
19: end while

4. Numerical Experiments and Comparisons

We compare the operation counts required by the algorithms to obtain a certain level of
accuracy in the solution approximation metric. For a fair comparison, we have implemented
all the proposed algorithms in this manuscript as well as those that are used for the compar-
isons in MATLAB which can be found in the provided in https://github.com/ibrahimkurban/M-
IHS.

4.1. Experimental setting

The coefficient matrix A ∈ Rn×d was generated for various sizes as follows: we first
sampled the entries of A from the distribution N (1d,Γ) where Γij = 5 · 0.9|i−j| so that the
columns are highly correlated with each other. Then by using the SVD, we replaced the
singular values with philips profile provided in RegTool [54]. We scaled the singular values
to set the condition number κ(A) to 108 and we used the same input signal provided by
RegTool. In this way, we have obtained a challenging setup for any first order iterative
solvers to compare their performances. In all the experiments, the same setup has been
used unless indicated. We counted the number of operations according to Hunger’s report
[55]. All the reported results have been obtained by averaging over 32 MC simulations.

4.2. Compared methods and their implementation details

We compared the proposed algorithms with the state of the art randomized precondi-
tioning techniques which can reach any level of desired accuracy within a bounded number
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of iterations. In the conducted comparison study we used a total of 5 previously proposed
techniques that can be briefly described as follows. The Blendenpik uses the R matrix in the
QR decomposition of the sketched matrix SA as the preconditioning matrix for the LSQR
algorithm just like the method proposed by Rokhlin et al. [26, 25] and it uses Randomized
Orthonormal System (ROS) to generate the sketched matrix [22]. The LSRN uses the V
matrix in the SVD similar to the Blendenpik. In spite of its high running complexity, for
parallelization purposes, the Gaussian sketch matrices are preferred in the LSRN. In addi-
tion to the LSQR, also the CS can be preferred in the LSRN as the core solver in distributed
computational environments [27]. The IHS uses the sketched Hessian as the preconditioning
matrix for the gradient descent. The Accelerated IHS (A-IHS) uses this idea for the CG
algorithm in over-determined problems. The dual counter-part of the A-IHS algorithm, A-
IDRP, is shown to be faster than the Dual Random Projection algorithm proposed in [4], so
we did not include the DRP in the simulations. Additionally, we include a CS variant of the
IHS (IHS-CS) to the comparisons: we combined the randomized preconditioning idea of the
IHS with the preconditioned CS method [14]. We found the bounds for the eigenvalues in
the same way as in the LSRN. We have solved the low dimensional sub-problems required
by all the IHS variants by taking the QR decomposition, but for inexact schemes, we have
used the proposed AAb Solver with a constant forcing term. Although the inexact approach
is also applicable for the accelerated algorithms proposed in [28], we did not include them
in the simulations since their exact versions are outperformed by the Exact M-IHS variants
in all settings. Except for the LSRN variants which use Gaussian sketch matrices, we used
Discrete Cosine Transform in the ROS for all the compared techniques.

4.3. Linear systems with noiseless measurements

In the first experiment, we did not include noise in the linear system to emphasize the
convergence rate that the algorithms can provide in such severely ill posed problems. To
make the problem more challenging, for this experiment only we sampled the input vector
x0 from uniform distribution Uni(−1, 1). In such scenarios, convergence rates of Krylov
subspace-based iterative solvers without preconditioning fall to its minimum value since the
energy of the input is distributed equally over the range space of A. The obtained results
are shown in Figure 2.

Due to high running time of the Gaussian sketches, O(mnd), the LSRN variants require
more operations (for the size of the problems considered here approximately 10 times larger)
than the others. Due to the lack of inner product calculations, the M-IHS requires slightly
fewer operations than the Blendenpik, nonetheless, it reaches to the same accuracy with
the LSRN-LSQR. The A-IHS algorithm has the worst performance which is expected in the
un-regularized problems, since it is adapted on the CG technique that can be unstable for
the un-regularized LS problems due to the high condition number [35]. The convergence of
the CS-based techniques, both of the IHS and the LSRN variants, are substantially slower
than the M-IHS, which suggests that the M-IHS algorithm can take the CS’s place in those
applications where parallel computation is an option. A similar comparison of the M-IHS

with the Accelerated Randomized Kaczmarz (ARK) and the CGLS without preconditioning
has been shown in Figure 2 of [30].
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Figure 2: Performance comparison on an un-regularized LS problem with size 216 × 2000. In order to
compare the convergence rates, number of iterations for all solvers are set to N = 100 with the same sketch
size: m = 4000. According to Corollary 4, we expect the M-IHS to reach an accuracy: ‖xN − x0‖2 ≤
κ(A)‖x0‖2

(
1
/√

2
)N

= 9 · 10−8, which closely fits to the observed case.

4.4. Linear systems with noisy measurements

We tested robustness of the methods against noise on regularized LS problems by using
an additive i.i.d. Gaussian noise at level ‖ω‖2

/
‖Ax0‖2 = 1%. For this purpose, the optimal

regularization parameter that minimizes the error ‖x∗(λ)− x0‖2 is provided to all techniques.
Each technique is allowed to conduct a total of 20 iterations. Results for strongly over-
determined and strongly under-determined cases can be seen in Figures 3 and 4, respectively.

We used a sketch size of m = min(n, d) to emphasize the promise of the RP techniques
although such sizes are not applicable for the LSRN variants. Even if the sketch size has
been increased further, the convergence of the LSRN variants were considerably slower than
the others; so we leave out the LSRN variants from the comparison set in the regularized
settings. Also, in the regularized setup, the A-IHS and A-IDRP methods are slower than
the Blendenpik, IHS-CS and M-IHS variants. Besides, the inexact schemes proposed for
the M-IHS and Dual M-IHS require significantly less operations to reach to the same level
of accuracy as their exact versions. Although the inexact schemes require approximately
10 times less operations then their exact versions in these setups; the saving gets larger as
the sketch size increases as examined in Section 4.5, because while any full decomposition
requires O(mr2) operations, approximately solving the sub-problem requires only O(mr)
operations.

As long as the statistical dimension of the problem is small with respect to the dimensions
of coefficient matrix A, Lemma 3 implies eligibility of sketch sizes that are smaller than the
rank, m ≤ min(n, d). This implication can be verified in Figure 5 on which we showed the
performance of the Primal Dual M-IHS techniques.

Here, the inexact schemes of the M-IHS and Dual M-IHS use a sketch size m = 2 ·sdλ(A).
The primal dual schemes use m1 = m2 = 2 · sdλ(A) except for the Primal Dual M-IHS
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Figure 3: Performance comparison on a regularized LS problem (n + d) with dimensions (n, d,m, sdλ(A)) =
(216, 4000, 4000, 443). According to Corollary 4, M-IHS is expected to satisfy: ‖xN − x"‖2 ≤
‖x"‖2

√
κ(ATA+ λId)(

√
443/4000)N = 6 · 10−9 which is almost exactly the case. The Inexact M-IHS

requires significantly fewer operations to reach the same accuracy as others. For example to obtain an
(η = 10−4)-optimal solution approximation, the Inexact M-IHS requires approximately 10 times less opera-
tions than any techniques that need factorization or inversion of the sketched matrix.

shown as a green curve which uses m1 = m2 = 8 · sdλ(A). All the methods are allowed to
conduct N = 60 iterations except the Primal Dual M-IHS with larger sketch size is allowed
to conduct only 20 iterations. The number of inner iterations are restricted by M = 25 for
all the primal dual schemes. Lastly, a fixed forcing term εsub = 0.1 is used in the AAb Solver

for all the inexact schemes. Applying a second dimension reduction may not seem to create
significant computational saving, but this approach produces smaller sub-problems than the
M-IHS and the Dual M-IHS techniques therefore enables estimation of parameters such as
λ with far fewer number of operations. Lastly, the Primal Dual M-IHS variants have a
noticeably higher rate of convergence than the A-IPDS algorithm which is based on the CG
technique.

4.5. Scalability to larger size problems

In this section, as the size of the coefficient matrix and the sketch size increase we
show that the saving gained by the inexact schemes become critically more important.
For this purpose, the algorithms were run on the over-determined problems with size 5 ·
104 × γ · 500 where γ ∈ {1, 2, 4, 8, 16}. The sketch size was chosen as m = d =
γ · 500 and the regularization parameter was set to 0.1453 for all the experiments so that
sdλ(A) = d/10 remains the same for all the experiments. The data was generated by using
the setup described in Section 4.1. Note that the convergence properties of the proposed
techniques depend only on the statistical dimension but not directly to the decay rate of
the singular values. To show this, for these experiments, we used heat singular value profile
that has significantly lower decay rate than the philips profile used earlier. The experiments
were realized on a desktop with 4Ghz i7-4790K CPU processor and 32Gb RAM. The flop
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Figure 4: Performance comparison on a regularized LS problem (n & d) with dimensions (n, d,m, sdλ(A)) =
(4000, 216, 4000, 462). The comments in Figure 3 are also valid for this case. The Inexact scheme for Dual

M-IHS is capable of significantly reducing the complexity.

count and wall clock time of the algorithms to reach to an (η = 10−4)-optimal solution
approximation are shown in Figure 6.

As d and m reach thousands, the number of operations required by the exact schemes
(Blendenpik and M-IHS) becomes larger than 100 times of the operation count required by
the inexact scheme. Moreover, the exact schemes need 25 time longer time than the inexact
scheme to reach the desired accuracy. Additionally, the operation counts and elapsed time
in each stage of the algorithms can be seen in Figure 7 which shows that even the cost of
the decomposition applied on the sketched matrices reaches to prohibitive levels for large
scale problems. Hence the use of solvers such as M-IHS variants that allow inexact schemes
is the only practical choice in these regimes. In these experiments, for the estimation of the
statistical dimension, we set T = 2 and εtr = 0.5. The additional cost of the sdλ(A) estima-
tion for the proposed M-IHS variants becomes negligibly small when R-factor is utilized; for
the inexact schemes, still it has a low cost, around the cost of one M-IHS-inexact iteration,
that does not cause an issue unlike a matrix decomposition.

Remark 3. Benchmarking of the exact and inexact schemes by using wall clock time in
MATLAB is not a fair comparison because for-loops in the interpreted languages such as
MATLAB is well known to be much slower than the loops in compiled languages such as C.
Most of the decompositions in MATLAB have C-based implementation with professional use
of BLAS operations, while the inexact schemes are based on a for-loop. Therefore, we prefer
to rely on the operation counts. However, to give an opinion, in spite of the disadvantages
we demonstrate timing as well.

4.6. Effect of the statistical dimension on the performance of the inexact schemes

The inexact schemes become more efficient as the statistical dimension decreases since
the sub-problems are solved in less iterations. To show the effect of varying statistical
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Figure 5: Performance comparison on regularized LS problems with square-like dimensions. The problem
dimensions are set to max(n, d) = 5 · 104 and min(n, d) = 104 with a noise level of 10%. The results verifies
two hypothesis: first the sketch size for the M-IHS variants can be chosen proportional to the statistical
dimension even if it becomes smaller than the size of the coefficient matrix. Second, the coefficient matrix
can be sketched from both sides to reduce computational complexity.

dimension on the complexity of the algorithms, we used over-determined problems with size
5 · 104 × 16 · 103 and varied the regularization parameter to obtain different ρ = sdλ(A)/d
ratios where ρ ∈ {0.5%, 1%, 2%, 5%, 10%, 20%, 50%}. The sketch size was chosen as
m = d and heat profile was used. As in Section 4.5, the flop count and wall clock time of
the algorithms to reach to an (η = 10−4)-optimal solution approximation for the problems
with different statistical dimensions are shown in Figure 8.

Complexity of the exact schemes increases by the increasing statistical dimension since
convergence rate sdλ(A)/m decreases as m remains constant. Complexity of the inexact
scheme increase faster since sub-problems require more iterations as the effective range
space gets larger. The effect of the increasing statistical dimension over the different stages
of the algorithms are shown in Figure 9. For the estimation of sdλ(A), same parameters
T = 2 and εtr = 0.5 were used as early. Even for the large ρ ratios, utilizing a sub-solver is
still more effective than computing a matrix decomposition.

5. Conclusions

Based on the IHS and the Heavy Ball Acceleration we proposed and analyzed the M-IHS

solvers for large scale LS problems. We examined the effect of "2 norm regularization on the
optimal momentum parameters. We obtained lower bounds on the sketch size for several
randomized distributions in order to get a pre-determined convergence rate with a constant
probability. The bounds suggest that the sketch size can be chosen proportional to the
statistical dimension of the problem. Hence, the M-IHS variants can be used for any di-
mension regimes if the statistical dimension is sufficiently smaller than the dimensions of
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Figure 6: Complexity of the algorithms in terms of operation count and computation time on a set of
5 · 104 × 500 · γ dimensional over-determined problems with m = d and sdλ(A) = d/10.

the coefficient matrix. We empirically showed the ratio between statistical dimension and
the sketch size determines the convergence rate of the proposed M-IHS variants. The main
advantage of the proposed M-IHS variants over the state of the art randomized precondi-
tioning techniques such as the Blendenpik, A-IHS and LSRN is their ability to use inexact
schemes that avoids matrix decompositions or inversions. As demonstrated in a wide range
of numerical experiments, computational saving provided by the proposed solver becomes
decidedly significant in large scale problems. Lastly, the proposed M-IHS variants avoid us-
ing any inner products in their iterations and they are shown to be faster than CS-based
randomized preconditioning algorithms. Therefore the proposed M-IHS variants are strong
candidates to be the techniques of choice in parallel or distributed architectures.

Appendix A. Discussion on the Proposed Error Upper Bound for Iterations of
Primal Dual Algorithms in [28]

In this appendix, we provide details of a critical discussion on the steps of the derivation
that leads to an error upper bound for the iterations of the primal dual algorithms given
in [28]. First, we provide a short list of minor issues that can easily be corrected.

1. During the initialization stage in Line 2 of both Algorithm 4 in page 4097 and Algo-
rithm 5 in page 4098, the residual error vector r(0) must be set to −λy instead of −y,
otherwise iterates of the both of the algorithms diverge from the optimal solution.

2. During the initialization stage in Line 2 of Algorithm 7 in 4912, the dual residual error
vector r(0)Dual must be set to −λy instead of −y and during the initialization stage of

the inner loop iterations in Line 15, the primal residual error vector r(0)P must be set to

−RTXT r(t+1)
D ; otherwise iterates of the algorithm diverges from the optimal solution.

The MATLAB codes provided in the https://github.com/ibrahimkurban/M-IHSlink
includes these corrections.
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Figure 7: Complexity of the each stage in terms of operation count and computation time on a set of
5 · 104 × 500 · γ dimensional over-determined problems with m = d and sdλ(A) = d/10. All methods
contain SA generation stage. The Blendenpik and M-IHS-exact contain also QR decomposition stage but
M-IHS-inexact does not. The M-IHS-exact estimates sdλ(A) by using the R-factor while the M-IHS-inexact
uses directly SA matrix and the AAb Solver as proposed in Algorithm 5. The results show that the matrix
decompositions are the main computational bottleneck for the exact schemes in large scale problems where
the advantage of the inexact schemes becomes more significant.

In addition to the above mentioned minor issues, there are some major issues as well. Unfor-
tunately, we could not obtain corrective actions on these major issues as we could have done
on the minor issues mentioned above. Therefore, a lower bound on the number of inner loop
iterations, that guarantee a certain rate of convergence at the main loop, is still an open
question for the primal dual algorithms. In the remaining of this appendix, we will provide
steps of the derivation presented in [28], along with our critical remarks on their validity.

Consider the A-IHS updates ŵt+1 = ŵt + ût. We are going to use exactly the same
notation as [28] except for that HS subscript for the A-IHS iterates are omitted. In the
primal dual algorithms, instead of exact sequence {ŵt}, a sequence {w̃t} is obtained due to
the approximate minimizers that are used in place of ût. Consequently while the sequence
{ŵt} is obtained after t exact iterations of the A-IHS algorithm, sequence {w̃t} is obtained
after t primal dual iterations in each of which k inner loop updates are used to approximate
ût’s. The details of the inner and outer loops can be found in Algorithm 7 of [28]. The aim
of the Theorem 9 is to establish an upper bound for ‖w̃t+1 −w!‖X where w! is the true
minimizer of the primal objective function. The triangle inequality and the convergence rate
of the A-IHS that is established in Theorem 2 of [28] is used to find an upper bound for this
error norm:

‖w̃t+1 −w!‖X ≤ ‖ŵt+1 −w!‖X + ‖w̃t+1 − ŵt+1‖X ≤ αt‖w‖X + ‖w̃t+1 − ŵt+1‖X,

where α =
C0

√
W2(XRp∩Sn−1) log(1/δ)

1−C0

√
W2(XRp∩Sn−1) log(1/δ)

. At this point a new iterate, wt+1, is introduced, which

is the result of one exact step of the IHS initialized at w̃t. The inner loop iterations at the
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Figure 8: Complexity of the algorithms in terms of operation count and computation time on a 5·104×4 ·103
dimensional problem for different ρ = sdλ(A)/d ratios.
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Figure 9: Complexity of each stage in terms of operation count and computation time on a 5 · 104 × 4 · 103
dimensional problem for different ρ = sdλ(A)/d ratios. Stages of each algorithm is given in Figure 7.

t-th outer (main) loop iteration of the primal dual iterations are expected to converge wt+1.
Therefore,

‖w̃t+1 − ŵt+1‖X ≤ ‖w̃t+1 −wt+1‖X + ‖wt+1 − ŵt+1‖X,

‖w̃t+1 −wt+1‖X ≤ λmax

(
XTX

n

)
βk‖wt+1‖2 ≤ λmax

(
XTX

n

)
βk
(
‖wt+1 −w!‖2 + ‖w!‖2

)

≤ 2λmax

(
XTX

n

)
βk‖w!‖2, (A.1)
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where β =
C0

√
W2(XTRp∩Sp−1) log(1/δ)

1−C0

√
W2(XRp∩Sp−1) log(1/δ)

. The last inequality is not valid unless ‖wt+1 −w!‖2 ≤
‖w!‖2. However, particularly during the initial phases of the main iterations this condition
can be violated. Therefore, this step of the proof requires a major revision. Assuming that
such revision is possible, up to this point, the following is obtained:

‖w̃t+1 −w!‖X ≤ αt‖w‖X + 2λmax

(
XTX

n

)
βk‖w!‖2 + ‖wt+1 − ŵt+1‖X. (A.2)

To proceed for the final form of the upper bound, the following upper bound on the last
term of (A.2) is given in [28]:

‖wt+1 − ŵt+1‖X ≤ ‖H̃−1‖2‖H̃−H‖2‖w̃t − ŵt‖X ≤
4λmax

(
XTX
n

)

λ
‖w̃t − ŵt‖X,

which is a valid bound. Then in [28] the following upper bound is given without necessary
justification:

‖w̃t − ŵt‖X ≤ 2λmax

(
XTX

n

)
βk‖w!‖2. (A.3)

to reach the final form of the error upper bound:

‖w̃t+1 −w!‖X ≤ αt‖w!‖X +
10λ2

max

(
XTX
n

)

λ
βk‖w!‖2.

However, this final form of the upper bound is not supported in detail as part of the presented
proof. Because of the following major issue, we conclude that the proposed bound remains
an unproven conjecture. The bound established for ‖w̃t+1 −wt+1‖X in (A.1) is used to
upper bound ‖w̃t − ŵt‖X in (A.3). This is not justified as part of the proof in [28].
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