
The Hidden Convex Optimization Landscape of Deep

Neural Networks

Mert Pilanci
June 28, 2023

Electrical Engineering

Stanford University



The Impact of Deep Learning

Y. LeCun, Y. Bengio, G. Hinton (2015)
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Deep Neural Networks

� non-convex (stochastic) gradient descent

� extremely high-dimensional problems

152 layer ResNet-152: 60.2 Million parameters (2015)

GPT1-3 language model: 175 Billion parameters (May 2020)

BAAI2 multi-modal model: 1.75 Trillion parameters (June 2021)

GPT-4 (March 2023)
1
OpenAI General Purpose Transformer

2
The Beijing Academy of Artificial Intelligence
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deep learning models

� often provide the best performance due to their large capacity

! challenging to train

� are complex black-box systems based on non-convex optimization

! hard to interpret what the model is actually learning
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deep learning models

� often provide the best performance due to their large capacity

! challenging to train

� are complex black-box systems based on non-convex optimization

! hard to interpret what the model is actually learning

one year later, another paper
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deep learning models

� often provide the best performance due to their large capacity

! challenging to train

� are complex black-box systems based on non-convex optimization

! hard to interpret what the model is actually learning

logistic regression (1 layer) has the same performance as the 6 layer NN for this task
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Sensitive to perturbations

� adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015

� (left) tra�c light is classified as ‘oven’ when 11 pixels are changed

� (right) stop sign recognized as speed limit sign, Evtimov et al, 2017
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Deep networks can hallucinate!

Fast MRI Challenge, 2020

model generates a false vessel (Muckley et al.)
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Open questions

� what are neural networks actually doing?

� can we make neural network models more reliable?

� can we make training energy/memory/data e�cient?
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How neural networks work?

� Least-Squares, Logistic Regression, Support Vector Machines etc. are

understood extremely well

� Insightful theorems for neural networks?
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Least Squares

min
x

kAx � bk22

� optimality condition: A
T (Ax � b) = 0

� solvers: Cholesky/QR, Conjugate Gradient,...
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Least Squares with L1 regularization

min
x

kAx � yk22 + �kxk1

� L1 norm kxk1 =
Pd

i=1 |xi|
encourages solution x

⇤ to be sparse
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L1 regularization: mechanical interpretation with large �

min
x

1

2
(x � y)2

| {z }
elastic energy

+
1

2
�|x|
| {z }

potential energy

red spring constant =1

blue ball mass = � (large)
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Least Squares with group L1 regularization

min
x

���
LX

i=1

Aixi � y

���
2

2
+ �

LX

i=1

kxik2

kxik2 =
qPd

j=1 x2
ij

encourages solution x
⇤ to be group sparse, i.e., most blocks

xi are zero
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Training two-layer neural networks: Non-convex optimization

pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

where �(u) is the activation function
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Rectified Linear Unit (ReLU) and Threshold Activations

pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

where �(u) = ReLU(u) = max(0, u)

or �(u) = sign(u)

13



Neural Networks are Convex Regularizers

pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

pconvex := minimize L (Z, y) + � R(Z)| {z }
convex regularization

Z 2 K ✓ Rd⇥p
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pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

pconvex := minimize L (Z, y) + �R(Z)

Z 2 K ✓ Rd⇥p

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex

can be obtained from an optimal solution to pconvex.

M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact

Polynomial-time Convex Optimization Formulations for Two-Layer Networks.

ICML 2020, T. Ergen, I. Gulluk, J. Lacotte, M. Pilanci, ICLR 2023 15



ReLU Network using squared loss = group Lasso using fixed features

data matrix X 2 Rn⇥d and label vector y 2 Rn
X =

2

64
x
T
1
...

x
T
n

3

75 , y =

2

64
y1
...

yn

3

75

pnon-convex = minimizeW1,W2

���
mX

j=1

�(XW1j)W2j � y

���
2

2
+ �

�
kW1k2F + kW2k2F

�

pconvex = minimizeu1,v1...up,vp2K

���
pX

i=1

DiX(ui � vi) � y

���
2

2
+ �

 
pX

i=1

kuik2 + kvik2

!

D1, ..., Dp are fixed diagonal matrices

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex can be

recovered from optimal non-zero u
⇤
i , v

⇤
i , i = 1, ..., p as

W
⇤
1j =

u⇤
ip

ku⇤
i k2

, W2j =
p
ku⇤

i k2 or W
⇤
1j =

v⇤jp
kv⇤j k2

, W2j = �
q
kv⇤j k2 .
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n = 3 samples in Rd, d = 2 X =
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Example: Convex Program for n = 3, d = 2

n = 3 samples X =

2

64
x
T
1

x
T
2

x
T
3

3

75 , y =

2

64
y1

y2

y3

3

75

min

�������

2

64
x
T
1

x
T
2

x
T
3

3

75 (u1 � v1) +

2

64
x
T
1

x
T
2

0

3

75 (u2 � v2) +

2

64
0

0

x
T
3

3

75 (u3 � v3) � y

�������

2

2

subject to + �
� 3X

i=1

kuik2 + kvik2
�

D1Xu1 � 0, D1Xv1 � 0

D2Xu2 � 0, D2Xv2 � 0

D4Xu3 � 0, D4Xv3 � 0

equivalent to the non-convex two-layer NN problem 20



Computational Complexity

Learning two-layer ReLU neural networks with m neurons

f(x) =
Pm

j=1 W2j�(Wj1x)

Previous results: � Combinatorial O(2mn
dm) (Arora et al., ICLR 2018)

Previous results: � Approximate O(2
p
m) (Goel et al., COLT 2017)

Convex program O((nr )r) where r = rank(X)

n : number of samples, d : dimension

(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data r = d. This can not be improved

unless P = NP even for m = 1. 21
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Number of variables = number of hyperplane arrangements

� convex program has at most
�
(nr )r

�
variables

#activation patterns of a one neuron

=
���{sign(Xw) : w 2 Rd}

���  O
�
(nr )r

�
where r = rank(X).

� rank is constant for convolutional networks

e.g., 3 ⇥ 3 ⇥ 1024 convolution =) r = 9 =) polynomial-time

wrt all dimensions
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ReLU Networks with Batch Normalization (BN)

� BN transforms a batch of data to zero mean and standard deviation one, and has

two trainable parameters ↵, �

BN↵,�(x) =
(I � 1

n11
T )x

k(I � 1
n11

T )xk2
� + ↵

pnon-convex = min
W1,W2,↵,�

���BN↵,�(�(XW1))W2 � y

���
2

2
+ �

�
kW1k2F + kW2k2F

�

=
=

pconvex = min
w1,v1...wp,vp2K

���
pX

i=1

Ui(wi � vi) � y

���
2

2
+ �

 
pX

i=1

kwik2 + kvik2

!

where Ui⌃iV
T
i = DiX is the SVD of DXi, i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci

Demystifying Batch Normalization in ReLU Networks, ICLR 2022 24



Vector Output Two-layer ReLU: equivalent to nuclear norm penalty

pnon-convex = min
W12Rd⇥m,W22Rm⇥c

���
mX

j=1

�(XW1j)W2j � Y

���
2

2
+ �

�
kW1k2F + kW2k2F

�

pconvex = min
U1,V1...Up,Vp2K

���
pX

i=1

DiX(Ui � Vi) � y

���
2

2
+ �

 
pX

i=1

kUik⇤ + kVik⇤

!

D1, ..., Dp are fixed diagonal matrices

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex can be

recovered from optimal non-zero U
⇤
i , V

⇤
i , i = 1, ..., p.

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci Vector-output ReLU Neural

Network Problems are Copositive Programs, ICLR 2021
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Three layer NN: FC-Relu-FC-Relu-FC is equivalent to a convex program with
double hyperplane arrangements

p
⇤
3 = min

{Wj ,uj ,w1j ,w2j}mj=1
uj2B2,8j

1

2

������

mX

j=1

((XWj)+w1j)+ w2j � y

������

2

2

+
�

2

mX

j=1

�
kWjk2F + kw1jk22 + w

2
2j

�
,

Theorem

The equivalent convex problem is

min
{Wi,W 0

i}
p
i=12K

1

2

������

pX

i=1

PX

j=1

DiDjX̃
�
W

0
ij � Wij

�
� y

������

2

2

+
�

2

pX

i,j=1

kWijkF + kW 0
ijkF



Reducing Complexity: Approximating Convex Programs by Sampling

p̃sampled-cvx = minimizeu1,v1...up̃,vp̃2K

���
p̃X

i=1

DiX(ui � vi) � y

���
2

2
+ �

� p̃X

i=1

kuik2 + kvik2
�

� sampled convex model: sample D1, ..., Dp̃ as Diag(Xu � 0) where u ⇠ N(0, I)

� guarantee for two-layer ReLU NNs: (1 + �k+1(X)
� ) relative objective value

approximation using O
�
(nk )k

�
samples

31



All stationary points correspond to sampled convex models

pnon-convex := minimizeW1,W2 L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

Theorem Stationary points
n

x : 0 2 conv {limk!1rf(xk) | limk!1 xk = x, xk 2 D}
o

of pnon-convex are optimal solutions of the sampled convex program psampled-cvx

Y. Wang, J. Lacotte, M. Pilanci. The Hidden Convex Optimization Landscape of

Two-Layer ReLU Neural Networks: an Exact Characterization of the Optimal Solutions

ICLR, 2022



Exact Convex Program: Two-Layer ReLU NN
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Figure: m = 8
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Figure: m = 15

Training cost of a two-layer ReLU network trained with SGD (10 initialization trials)

and the convex program on a toy dataset (d = 2)
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Exact Convex Program: Classifying a subset of CIFAR-10
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Figure: Two-layer ReLU network trained with SGD (10 initialization trials) and the convex

program on a subset of CIFAR-10 for binary classification (n = 195)
34



Sampled Convex Model vs Non-convex Model (Stochastic Gradient Descent)

Figure: training accuracy Figure: test accuracy

10-class classification on the CIFAR Dataset (n = 50, 000, d = 3072) with randomly

sampled arrangement patterns for the convex program 35



Re-training Final Convolutional Layers of Pretrained Deep Nets

Person detection task on the COCO Dataset containing 110, 000 images of median

resolution 640 x 480. Two-layer ReLU CNN trained on pretrained MobileNetV3

features (convex PyTorch model: https://github.com/pilancilab/convex_nn) 36

https://github.com/pilancilab/convex_nn)


Specialized Convex Solver: Performance Profile

� baseline: gradient based non-

convex optimization: SGD, ADAM

(best of 10 random initializations

and 10 learning rates)

� convex: proximal gradient with

adaptive acceleration

O(1/T
2) convergence rate

0 20 40 60 80 100

Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p.
of

P
ro

bl
em

s
So

lv
ed

$POWFY Adam SGD

Performance profile showing the percentage of problems solved over a collection of 400

UC Irvine datasets up to 10�3 training error vs time 4

4A. Mishkin, A. Sahiner, M. Pilanci. Fast Convex Optimization for Two-Layer ReLU

Networks, ICML 2022. github.com/pilancilab/scnn
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Interpreting Neural Networks via Convexity: Time Series Prediction

X =

2
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Interpreting Neural Networks via Convexity: Time Series Prediction

pconvex = minimizeu1,v1...up,vp2K

���
pX

i=1

DiX(ui � vi) � y

���
2

2
+ �

 
pX

i=1

kuik2 + kvik2

!

� sampled convex program: Di = diag(Xui � 0), ui ⇠ N (0, I) forms a Locality

Sensitive Hash (Charikar, 2002) 39



Layer-Wise Training of Deep Networks

(i) train a two-layer network convex optimization

(ii) fix the hidden layer to use as feature embedding

(ii) repeat two-layer network training on these features

� ideal for edge AI: low memory and low communication between blocks

� modular: networks can keep evolving, can terminate early during inference

� each convex model is trained to global optimality e�ciently with no

hyperparameter tuning
40



Numerical results for layer-wise convex learning: CIFAR-10 image classification

convex layerwise training

� end-to-end trained 5 layer CNN accuracy: 89%, 16 layer VGG accuracy: 92%
41



Convex Generative Adversarial Networks (GANs)

� Wasserstein GAN parameterized with neural networks

p
⇤ = min

✓g
max

D: 1-Lipschitz
Ex⇠px [D(x)] � Ez⇠pz [D(G✓g(z))]

⇠= min
✓g

max
✓d

Ex⇠px [D✓d(x)] � Ez⇠pz [D✓d(G✓g(z))]

Theorem: Two-layer generator two-layer discriminator WGAN problems are

convex-concave games. Saddle-points exists and globally solvable under convex

parameterization. (Sahiner et al. Hidden Convexity of Wasserstein GANs,

ICLR 2022.)
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Conclusion and Open Problems

� neural networks are high-dimensional convex models. Convex optimization theory

& solvers can be applied.

� we can have better specialized solvers (e.g., accelerated proximal gradient)

� Extensions: autoencoders, transformers, di↵usion models

� Open problems: improving the sampler

Ref 1 M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact

Polynomial-time Convex Optimization Formulations for Two-Layer Networks.

ICML 2020

Ref 2 T. Ergen, M. Pilanci, Convex Geometry and Duality of Over-parameterized Neural

Networks. JMLR 2021
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� two-layer ReLU-activation generator G✓g(Z) = (ZW1)+W2

� two-layer quadratic activation discriminator D✓d(X) = (XV1)2V2

Wasserstein GAN problem is equivalent to a convex-concave game, which can be

solved via convex optimization

G
⇤ =argminG kGk2F s.t. kX>

X � G
>
Gk2  �

W
⇤
1 , W

⇤
2 =argminW1,W2

kW1k2F + kW2k2F s.t. G
⇤ = (ZW1)+W2,

� the first problem can be solved via singular value thresholding as

G
⇤ = U(⌃2 � �I)1/2+ V

> where X = U⌃V
> is the SVD of X.

� the second problem can be solved via convex optimization as shown earlier
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Progressive GANs

deeper architectures can be trained layerwise
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Numerical Results

� real faces from the CelebA dataset

� fake faces generated using convex optimization

two-layer quadratic activation discriminator and linear generator trained via closed

form optimal solution progressively for a total of 4 layers

A. Sahiner et al. Hidden Convexity of Wasserstein GANs, preprint 2021
46



Transformer and Attention-based Architectures

� based on the attention module

f(X) = �(XQ
T
KX)XV

� Q, K, V are trainable parameters: Q : query, K : key, V : value

� used in transformers, vision transformers, mixer models...

� There is a convex formulation1

1
A. Sahiner, T. Ergen, B. Ozturkler, M. Mardani, J. Pauly, M. Pilanci, ICML 2022
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Transfer Learning

� transfer learning without fine-tuning existing weights of the backbone network

� generate embeddings from an ImageNet pre-trained deep transformer model

� then finetune by training a two-layer attention block using convex optimization to

classify images from CIFAR-100, while leaving the pre-trained backbone fixed

� unified architecture: can be applied to any data (text, images, time series,

tabular data, multimodal data...)

� ideal for fine-tuning edge devices

58
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Two layer CNN with pooling: Conv-Pooling-Relu-FC is equivalent to `1 penalty,
i.e., constrained Lasso minw2K k�w � yk22 + �kwk1

p
⇤
2 = min

{uj ,w1j ,w2j}mj=1
uj2B2,8j

1

2

������

mX

j=1

(XUjw1j)+ w2j � y

������

2

2

+
�

2

mX

j=1

�
kw1jk22 + w

2
2j

�
,

Theorem

Let X̃ = XF and F 2 Cd⇥d be the DFT matrix. The equivalent convex problem is

min
{wi,w0

i}
p
i=1

wi,w0
i2Cd,8i

1

2

�����

pX

i=1

diag(Si)X̃
�
w

0
i � wi

�
� y

�����

2

2

+
�p
d

pX

i=1

�
kwik1 + kw0

ik1
�

s.t. (2diag(Si) � In)X̃wi � 0, (2diag(Si) � In)X̃w
0
i � 0, 8i,



Sampled Convex Model vs Non-convex Model for fine-tuning

Person detection task on the Common Objects in Context Dataset (110, 000 images of

median resolution 640 x 480).

Fine-tuning all layers of MobileNetV3 + convex and non-convex CNN head
71
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