The Hidden Convex Optimization Landscape of Deep Neural Networks

Mert Pilanci

June 28, 2023

Electrical Engineering Stanford University

The Impact of Deep Learning

Y. LeCun, Y. Bengio, G. Hinton (2015)

Deep Neural Networks

- non-convex (stochastic) gradient descent
- o extremely high-dimensional problems

152 layer ResNet-152: 60.2 Million parameters (2015)

GPT¹-3 language model: 175 Billion parameters (May 2020)

BAAI² multi-modal model: 1.75 Trillion parameters (June 2021)

GPT-4 (March 2023)

¹OpenAl General Purpose Transformer ²The Beijing Academy of Artificial Intelligence

- o often provide the best performance due to their large capacity
 - \rightarrow challenging to train

- o often provide the best performance due to their large capacity
 - \rightarrow challenging to train
- are complex black-box systems based on non-convex optimization
 - \rightarrow hard to interpret what the model is actually learning

o often provide the best performance due to their large capacity

 \rightarrow challenging to train

- are complex black-box systems based on non-convex optimization
 - ightarrow hard to interpret what the model is actually learning

nature

Letter | Published: 29 August 2018

Deep learning of aftershock patterns following large earthquakes

Phoebe M. R. DeVries ⊡, Fernanda Viégas, Martin Wattenberg & Brendan J. Meade

Nature 560, 632–634(2018) | Cite this article 19k Accesses | 20 Citations | 1018 Altmetric | Metrics

o often provide the best performance due to their large capacity

\rightarrow challenging to train

- are complex black-box systems based on non-convex optimization
 - \rightarrow hard to interpret what the model is actually learning

o often provide the best performance due to their large capacity

 \rightarrow challenging to train

• are complex black-box systems based on non-convex optimization

ightarrow hard to interpret what the model is actually learning

one year later, another paper **Nature**

Matters Arising | Published: 02 October 2019

One neuron versus deep learning in aftershock prediction

Arnaud Mignan 🖂 & Marco Broccardo 🖂

Nature 574, E1–E3(2019) | Cite this article

6210 Accesses 2 Citations 367 Altmetric Metrics

o often provide the best performance due to their large capacity

\rightarrow challenging to train

- are complex black-box systems based on non-convex optimization
 - ightarrow hard to interpret what the model is actually learning

logistic regression (1 layer) has the same performance as the 6 layer NN for this task

Sensitive to perturbations

- o adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015
- $\circ~({\sf left})$ traffic light is classified as 'oven' when 11 pixels are changed
- o (right) stop sign recognized as speed limit sign, Evtimov et al, 2017

Deep networks can hallucinate!

Fast MRI Challenge, 2020 model generates a false vessel (Muckley et al.)

- what are neural networks actually doing?
- o can we make neural network models more reliable?
- o can we make training energy/memory/data efficient?

How neural networks work?

- Least-Squares, Logistic Regression, Support Vector Machines etc. are understood extremely well
- Insightful theorems for neural networks?

- optimality condition: $A^T(Ax b) = 0$
- solvers: Cholesky/QR, Conjugate Gradient,...

Least Squares with L1 regularization

$$\min_{x} \|Ax - y\|_{2}^{2} + \lambda \|x\|_{1}$$

• L1 norm
$$||x||_1 = \sum_{i=1}^d |x_i|$$

encourages solution x^* to be sparse

L1 regularization: mechanical interpretation with large λ

$$\begin{array}{l} \min_{x} \quad \underbrace{\frac{1}{2}(x-y)^{2}}_{\text{elastic energy}} + \underbrace{\lambda |x|}_{\text{potential energy}}\\ \text{red spring constant} = 1\\ \text{blue ball mass} = \lambda \text{ (large)} \end{array}$$

Least Squares with group L1 regularization

$$\min_{x} \left\| \sum_{i=1}^{L} A_{i} x_{i} - y \right\|_{2}^{2} + \lambda \sum_{i=1}^{L} \|x_{i}\|_{2}$$

$$\|x_i\|_2 = \sqrt{\sum_{j=1}^d x_{ij}^2}$$

encourages solution x^* to be group sparse, i.e., most blocks x_i are zero

Training two-layer neural networks: Non-convex optimization

$$p_{\text{non-convex}} := \min \min \mathbb{L} \left(\phi(XW_1)W_2, y \right) + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right)$$
$$W_1 \in \mathbb{R}^{d \times m}$$
$$W_2 \in \mathbb{R}^{m \times 1}$$

where $\phi(u)$ is the activation function

$$p_{\text{non-convex}} := \min \min L \left(\phi(XW_1)W_2, y \right) + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right)$$
$$W_1 \in \mathbb{R}^{d \times m}$$
$$W_2 \in \mathbb{R}^{m \times 1}$$

where $\phi(u) = \text{ReLU}(u) = \max(0, u)$ or $\phi(u) = \text{sign}(u)$ $p_{\text{non-convex}} := \text{minimize} \quad L(\phi(XW_1)W_2, y) + \lambda(||W_1||_F^2 + ||W_2||_F^2)$ $W_1 \in \mathbb{R}^{d \times m}$ $W_2 \in \mathbb{R}^{m \times 1}$ $p_{\text{convex}} := \text{minimize} \quad L(Z, y) + \lambda$ R(Z)convex regularization $Z \in \mathcal{K} \subseteq \mathbb{R}^{d \times p}$

 $p_{\text{non-convex}} := \min \sum_{k=1}^{m} L\left(\phi(XW_1)W_2, y\right) + \lambda\left(\|W_1\|_F^2 + \|W_2\|_F^2\right)$ $W_1 \in \mathbb{R}^{d \times m}$ $W_2 \in \mathbb{R}^{m \times 1}$

$$p_{\mathsf{convex}} := \min \min L (Z, y) + \lambda R(Z)$$
$$Z \in \mathcal{K} \subseteq \mathbb{R}^{d \times p}$$

Theorem $p_{non-convex} = p_{convex}$, and an optimal solution to $p_{non-convex}$ can be obtained from an optimal solution to p_{convex} .

15

M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-Layer Networks. ICML 2020, T. Ergen, I. Gulluk, J. Lacotte, M. Pilanci, ICLR 2023

ReLU Network using squared loss = group Lasso using fixed features

data matrix
$$X \in \mathbb{R}^{n \times d}$$
 and label vector $y \in \mathbb{R}^n X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$
 $p_{\text{non-convex}} = \text{minimize}_{W_1, W_2} \left\| \sum_{j=1}^m \phi(XW_{1j})W_{2j} - y \right\|_2^2 + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right)$
 $p_{\text{convex}} = \text{minimize}_{u_1, v_1 \dots u_p, v_p \in \mathcal{K}} \left\| \sum_{i=1}^p D_i X(u_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \|u_i\|_2 + \|v_i\|_2 \right)$

 $D_1, ..., D_p$ are fixed diagonal matrices

Theorem $p_{non-convex} = p_{convex}$, and an optimal solution to $p_{non-convex}$ can be recovered from optimal non-zero u_i^*, v_i^* , i = 1, ..., p as

$$W_{1j}^* = rac{u_i^*}{\sqrt{\|u_i^*\|_2}}$$
, $W_{2j} = \sqrt{\|u_i^*\|_2}$ or $W_{1j}^* = rac{v_j^*}{\sqrt{\|v_j^*\|_2}}$, $W_{2j} = -\sqrt{\|v_j^*\|_2}$.

$$n = 3 \text{ samples in } \mathbb{R}^{d}, d = 2 \quad X = \begin{bmatrix} x_{1}^{T} \\ x_{2}^{T} \\ x_{3}^{T} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$

$$(3,3)$$

$$(2,2) \bullet$$

$$(1,0) \quad D_{1}X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$$

$$n = 3 \text{ samples in } \mathbb{R}^{d}, d = 2 \quad X = \begin{bmatrix} x_{1}^{T} \\ x_{2}^{T} \\ x_{3}^{T} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$

$$\begin{pmatrix} y \\ (3,3) \\ (2,2) \bullet \\ \bullet \\ (1,0) \end{pmatrix}$$

$$D_{1}X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$$

$$(1,0) \quad D_{2}X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} X = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$$

$$n = 3 \text{ samples in } \mathbb{R}^{d}, d = 2 \quad X = \begin{bmatrix} x_{1}^{T} \\ x_{2}^{T} \\ x_{3}^{T} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$

$$\begin{pmatrix} y \\ (3,3) \\ (2,2) \bullet \\ \bullet \\ (1,0) \end{pmatrix} \qquad D_{1}X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$$

$$L_{1}X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} X = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$$

$$D_{2}X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} X = \begin{bmatrix} 2 & 2 \\ 3 & 3 \\ 0 & 0 \end{bmatrix}$$

$$D_{4}X = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Example: Convex Program for n = 3, d = 2

 $D_1 X u_1 \ge 0, D_1 X v_1 \ge 0$ $D_2 X u_2 \ge 0, D_2 X v_2 \ge 0$ $D_4 X u_3 \ge 0, D_4 X v_3 \ge 0$

equivalent to the non-convex two-layer NN problem

Computational Complexity

Learning two-layer ReLU neural networks with m neurons $f(x) = \sum_{j=1}^m W_{2j} \phi(W_{j1}x)$

Previous results: \circ Combinatorial $O(2^m n^{dm})$ (Arora et al., ICLR 2018) \circ Approximate $O(2^{\sqrt{m}})$ (Goel et al., COLT 2017)

Convex program
$$O((\frac{n}{r})^r)$$
 where $r = \operatorname{rank}(X)$

Computational Complexity

Learning two-layer ReLU neural networks with m neurons $f(x) = \sum_{j=1}^m W_{2j} \phi(W_{j1}x)$

Previous results: \circ Combinatorial $O(2^m n^{dm})$ (Arora et al., ICLR 2018) \circ Approximate $O(2^{\sqrt{m}})$ (Goel et al., COLT 2017)

Convex program
$$O((\frac{n}{r})^r)$$
 where $r = \operatorname{rank}(X)$

- n : number of samples, d : dimension
- (i) polynomial in \boldsymbol{n} and \boldsymbol{m} for fixed rank \boldsymbol{r}
- (ii) exponential in d for full rank data r = d. This can not be improved unless P = NP even for m = 1.

Number of variables = number of hyperplane arrangements

• convex program has at most $\left(\left(\frac{n}{r}\right)^r\right)$ variables

#activation patterns of a **one neuron**

 $= \left| \{ \operatorname{sign}(Xw) : w \in \mathbb{R}^d \} \right| \le O((\frac{n}{r})^r) \text{ where } r = \operatorname{rank}(X).$

o rank is constant for convolutional networks

e.g., $3 \times 3 \times 1024$ convolution $\implies r = 9 \implies$ polynomial-time 23

ReLU Networks with Batch Normalization (BN)

 $\circ\,$ BN transforms a batch of data to zero mean and standard deviation one, and has two trainable parameters $\alpha,\gamma\,$

$$\mathsf{BN}_{\alpha,\gamma}(x) = \frac{(I - \frac{1}{n}\mathbf{1}\mathbf{1}^T)x}{\|(I - \frac{1}{n}\mathbf{1}\mathbf{1}^T)x\|_2}\gamma + \alpha$$

$$p_{\text{non-convex}} = \min_{W_1, W_2, \alpha, \gamma} \left\| \mathbf{BN}_{\alpha, \gamma}(\phi(XW_1))W_2 - y \right\|_2^2 + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right)$$
$$\| \\ p_{\text{convex}} = \min_{w_1, v_1 \dots w_p, v_p \in \mathcal{K}} \left\| \sum_{i=1}^p U_i(w_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \|w_i\|_2 + \|v_i\|_2 \right)$$

where $U_i \Sigma_i V_i^T = D_i X$ is the SVD of DX_i , i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci **Demystifying Batch Normalization in ReLU Networks, ICLR 2022**

Vector Output Two-layer ReLU: equivalent to nuclear norm penalty

$$p_{\mathsf{non-convex}} = \min_{W_1 \in \mathbb{R}^{d \times m}, W_2 \in \mathbb{R}^{m \times c}} \left\| \sum_{j=1}^m \phi(XW_{1j}) W_{2j} - Y \right\|_2^2 + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right)$$
$$p_{\mathsf{convex}} = \min_{U_1, V_1 \dots U_p, V_p \in \mathcal{K}} \left\| \sum_{i=1}^p D_i X(U_i - V_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \|U_i\|_* + \|V_i\|_* \right)$$

 $D_1, ..., D_p$ are fixed diagonal matrices

Theorem $p_{\text{non-convex}} = p_{\text{convex}}$, and an optimal solution to $p_{\text{non-convex}}$ can be recovered from optimal non-zero U_i^*, V_i^* , i = 1, ..., p.

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci Vector-output ReLU Neural Network Problems are Copositive Programs, ICLR 2021

Three layer NN: FC-Relu-FC-Relu-FC is equivalent to a convex program with double hyperplane arrangements

$$p_{3}^{*} = \min_{\substack{\{W_{j}, u_{j}, w_{1j}, w_{2j}\}_{j=1}^{m} \\ u_{j} \in \mathcal{B}_{2}, \forall j}} \frac{1}{2} \left\| \sum_{j=1}^{m} \left((\mathbf{X}W_{j})_{+} w_{1j} \right)_{+} w_{2j} - y \right\|_{2}^{2} + \frac{\beta}{2} \sum_{j=1}^{m} \left(\|W_{j}\|_{F}^{2} + \|w_{1j}\|_{2}^{2} + w_{2j}^{2} \right),$$

Theorem

The equivalent convex problem is

$$\min_{\{W_i, W_i'\}_{i=1}^p \in \mathcal{K}} \frac{1}{2} \left\| \sum_{i=1}^p \sum_{j=1}^P D_i D_j \tilde{\mathbf{X}} \left(W_{ij}' - W_{ij} \right) - y \right\|_2^2 + \frac{\beta}{2} \sum_{i,j=1}^p \|W_{ij}\|_F + \|W_{ij}'\|_F$$

Reducing Complexity: Approximating Convex Programs by Sampling

$$\tilde{p}_{\mathsf{sampled-cvx}} = \mathsf{minimize}_{u_1, v_1 \dots u_{\tilde{p}}, v_{\tilde{p}} \in \mathcal{K}} \left\| \sum_{i=1}^p D_i X(u_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \|u_i\|_2 + \|v_i\|_2 \right) \right\|_2^2$$

- sampled convex model: sample $D_1, ..., D_{\tilde{p}}$ as $\text{Diag}(Xu \ge 0)$ where $u \sim N(0, I)$
- guarantee for two-layer ReLU NNs: $(1 + \frac{\sigma_{k+1}(X)}{\lambda})$ relative objective value approximation using $O((\frac{n}{k})^k)$ samples

 $p_{\mathsf{non-convex}} := \mathsf{minimize}_{W_1, W_2} \quad L\left(\phi(XW_1)W_2, y\right) + \lambda\left(\|W_1\|_F^2 + \|W_2\|_F^2\right)$

Theorem Stationary points
$$\left\{x : 0 \in \operatorname{conv}\left\{\lim_{k \to \infty} \nabla f(x_k) \mid \lim_{k \to \infty} x_k = x, x_k \in D\right\}\right\}$$

of $p_{\sf non-convex}$ are optimal solutions of the sampled convex program $p_{\sf sampled-cvx}$

Y. Wang, J. Lacotte, M. Pilanci. The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural Networks: an Exact Characterization of the Optimal Solutions ICLR, 2022

Exact Convex Program: Two-Layer ReLU NN

Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) and the convex program on a toy dataset (d = 2)

Exact Convex Program: Classifying a subset of CIFAR-10

Figure: Two-layer ReLU network trained with SGD (10 initialization trials) and the convex program on a subset of CIFAR-10 for binary classification (n = 195)

Sampled Convex Model vs Non-convex Model (Stochastic Gradient Descent)

10-class classification on the CIFAR Dataset (n = 50,000, d = 3072) with randomly sampled arrangement patterns for the convex program

Re-training Final Convolutional Layers of Pretrained Deep Nets

Person detection task on the COCO Dataset containing 110,000 images of median resolution 640 x 480. Two-layer ReLU CNN trained on pretrained MobileNetV3 features (convex PyTorch model: https://github.com/pilancilab/convex_nn)

Specialized Convex Solver: Performance Profile

- baseline: gradient based nonconvex optimization: SGD, ADAM (best of 10 random initializations and 10 learning rates)
- convex: proximal gradient with adaptive acceleration

 ${\cal O}(1/T^2)$ convergence rate

Performance profile showing the percentage of problems solved over a collection of 400 UC Irvine datasets up to 10^{-3} training error vs time ⁴

⁴A. Mishkin, A. Sahiner, M. Pilanci. **Fast Convex Optimization for Two-Layer ReLU Networks, ICML 2022**. github.com/pilancilab/scnn

Interpreting Neural Networks via Convexity: Time Series Prediction

Interpreting Neural Networks via Convexity: Time Series Prediction

$$p_{\text{convex}} = \text{minimize}_{u_1, v_1 \dots u_p, v_p \in \mathcal{K}} \left\| \sum_{i=1}^p D_i X(u_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \|u_i\|_2 + \|v_i\|_2 \right)$$

• sampled convex program: $D_i = \text{diag}(Xu_i \ge 0), u_i \sim \mathcal{N}(0, I)$ forms a Locality Sensitive Hash (Charikar, 2002)

Layer-Wise Training of Deep Networks

- (i) train a two-layer network convex optimization
- (ii) fix the hidden layer to use as feature embedding
- (ii) repeat two-layer network training on these features
 - o ideal for edge AI: low memory and low communication between blocks
 - o modular: networks can keep evolving, can terminate early during inference
 - each convex model is trained to global optimality efficiently with no hyperparameter tuning

Numerical results for layer-wise convex learning: CIFAR-10 image classification

• end-to-end trained 5 layer CNN accuracy: 89%, 16 layer VGG accuracy: 92%

Convex Generative Adversarial Networks (GANs)

· Wasserstein GAN parameterized with neural networks

$$p^* = \min_{\theta_g} \max_{D: \text{ 1-Lipschitz}} \mathbb{E}_{x \sim p_x}[D(x)] - \mathbb{E}_{z \sim p_z}[D(G_{\theta_g}(z))]$$
$$\cong \min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_x}[D_{\theta_d}(x)] - \mathbb{E}_{z \sim p_z}[D_{\theta_d}(G_{\theta_g}(z))]$$

Theorem: Two-layer generator two-layer discriminator WGAN problems are convex-concave games. Saddle-points exists and globally solvable under convex parameterization. (Sahiner et al. **Hidden Convexity of Wasserstein GANs, ICLR 2022.)**

Conclusion and Open Problems

- neural networks are high-dimensional convex models. Convex optimization theory & solvers can be applied.
- we can have better specialized solvers (e.g., accelerated proximal gradient)
- Extensions: autoencoders, transformers, diffusion models
- o Open problems: improving the sampler
- Ref 1 M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-Layer Networks. ICML 2020
- Ref 2 T. Ergen, M. Pilanci, Convex Geometry and Duality of Over-parameterized Neural Networks. JMLR 2021

- two-layer ReLU-activation generator $G_{\theta_q}(Z) = (ZW_1)_+ W_2$
- two-layer quadratic activation discriminator $D_{\theta_d}(X) = (XV_1)^2 V_2$ Wasserstein GAN problem is equivalent to a convex-concave game, which can be solved via convex optimization

$$G^* = \operatorname{argmin}_G \|G\|_F^2$$
 s.t. $\|X^\top X - G^\top G\|_2 \le \lambda$

$$W_1^*, W_2^* = \operatorname{argmin}_{W_1, W_2} \|W_1\|_F^2 + \|W_2\|_F^2 \text{ s.t. } G^* = (ZW_1)_+ W_2,$$

• the first problem can be solved via singular value thresholding as $G^* = U(\Sigma^2 - \lambda I)^{1/2}_+ V^\top$ where $X = U\Sigma V^\top$ is the SVD of X.

o the second problem can be solved via convex optimization as shown earlier

deeper architectures can be trained layerwise

Numerical Results

• real faces from the CelebA dataset

o fake faces generated using convex optimization

two-layer quadratic activation discriminator and linear generator trained via closed form optimal solution progressively for a total of 4 layers A. Sahiner et al. **Hidden Convexity of Wasserstein GANs, preprint 2021** based on the attention module

$$f(X) = \sigma(XQ^T K X) X V$$

- $\circ \ Q, K, V$ are trainable parameters: Q : query, K : key, V : value
- o used in transformers, vision transformers, mixer models...
- There is a convex formulation¹

¹A. Sahiner, T. Ergen, B. Ozturkler, M. Mardani, J. Pauly, M. Pilanci, ICML 2022

- transfer learning without fine-tuning existing weights of the backbone network
- o generate embeddings from an ImageNet pre-trained deep transformer model
- then finetune by training a two-layer attention block using convex optimization to classify images from CIFAR-100, while leaving the pre-trained backbone fixed

- transfer learning without fine-tuning existing weights of the backbone network
- o generate embeddings from an ImageNet pre-trained deep transformer model
- then finetune by training a two-layer attention block using convex optimization to classify images from CIFAR-100, while leaving the pre-trained backbone fixed
- **unified architecture:** can be applied to any data (text, images, time series, tabular data, multimodal data...)
- ideal for fine-tuning edge devices

Two layer CNN with pooling: Conv-Pooling-Relu-FC is equivalent to ℓ_1 penalty, i.e., constrained Lasso $\min_{w \in \mathcal{K}} \|\Phi w - y\|_2^2 + \lambda \|w\|_1$

$$p_{2}^{*} = \min_{\substack{\{u_{j}, w_{1j}, w_{2j}\}_{j=1}^{m} \\ u_{j} \in \mathcal{B}_{2}, \forall j}} \frac{1}{2} \left\| \sum_{j=1}^{m} \left(\mathbf{X} U_{j} w_{1j} \right)_{+} w_{2j} - y \right\|_{2}^{2} + \frac{\beta}{2} \sum_{j=1}^{m} \left(\|w_{1j}\|_{2}^{2} + w_{2j}^{2} \right),$$

Theorem

Let $ilde{\mathbf{X}} = \mathbf{X}F$ and $F \in \mathbb{C}^{d imes d}$ be the DFT matrix. The equivalent convex problem is

$$\begin{split} & \min_{\substack{\{w_i, w_i'\}_{i=1}^p \\ w_i, w_i' \in \mathbb{C}^d, \forall i}} \frac{1}{2} \left\| \sum_{i=1}^p \text{diag}(S_i) \tilde{\mathbf{X}} \left(w_i' - w_i \right) - y \right\|_2^2 + \frac{\beta}{\sqrt{d}} \sum_{i=1}^p \left(\|w_i\|_1 + \|w_i'\|_1 \right) \\ & \text{s.t.} \ (2\text{diag}(S_i) - I_n) \tilde{\mathbf{X}} w_i \ge 0, \ (2\text{diag}(S_i) - I_n) \tilde{\mathbf{X}} w_i' \ge 0, \forall i, \end{split}$$

Sampled Convex Model vs Non-convex Model for fine-tuning

Person detection task on the Common Objects in Context Dataset (110,000 images of median resolution 640 x 480).

Fine-tuning all layers of MobileNetV3 + convex and non-convex CNN head