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Deep Neural Networks

o non-convex (stochastic) gradient descent

o extremely high-dimensional problems
152 layer ResNet-152: 60.2 Million parameters (2015)
GPT!-3 language model: 175 Billion parameters (May 2020)
BAAI? multi-modal model: 1.75 Trillion parameters (June 2021)
GPT-4 (March 2023)

1OpenAl General Purpose Transformer
The Beijing Academy of Artificial Intelligence
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nature

Letter | Published: 29 August 2018

Deep learning of aftershock patterns
following large earthquakes

Phoebe M. R. DeVries &, Fernanda Viégas, Martin Wattenberg & Brendan J.
Meade

Nature 560, 632-634(2018) | Cite this article
19k Accesses | 20 Citations | 1018 Altmetric | Metrics



deep learning models
o often provide the best performance due to their large capacity
— challenging to train
o are complex black-box systems based on non-convex optimization
— hard to interpret what the model is actually learning

Chi-Chi earthquake Kobe earthquake Kashmir earthquake
d=7.5km,n =348, d=7.5km,n=10, d=12.5km, n =284,
Ny = 1,321 Ny, =28 Ny =565
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deep learning models
o often provide the best performance due to their large capacity
— challenging to train
o are complex black-box systems based on non-convex optimization
— hard to interpret what the model is actually learning

one year later, another paper

nature

Matters Arising | Published: 02 October 2019
One neuron versus deep learning in
aftershock prediction

Arnaud Mignan & & Marco Broccardo

Nature 574, E1-E3(2019) | Cite this article
6210 Accesses | 2 Citations | 367 Altmetric | Metrics



deep learning models
o often provide the best performance due to their large capacity
— challenging to train
o are complex black-box systems based on non-convex optimization
— hard to interpret what the model is actually learning

logistic regression (1 layer) has the same performance as the 6 layer NN for this task
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Sensitive to perturbations

ffiantich

Traffic Light 11 White Pixels Oven

o adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015
o (left) traffic light is classified as ‘oven’ when 11 pixels are changed

o (right) stop sign recognized as speed limit sign, Evtimov et al, 2017



Deep networks can hallucinate!

Fast MRI Challenge, 2020
model generates a false vessel (Muckley et al.)

Ground Truth
Submission




Open questions

o what are neural networks actually doing?
o can we make neural network models more reliable?

o can we make training energy/memory/data efficient?



How neural networks work?

| convex \  non-convex

o Least-Squares, Logistic Regression, Support Vector Machines etc. are
understood extremely well

o Insightful theorems for neural networks?



Least Squares

min || Az — bl|3
x

o optimality condition: AT (Az —b) =0
o solvers: Cholesky/QR, Conjugate Gradient,...



Least Squares with L1 regularization

min||Az — y3 + Mz]s

o L1 norm ||z||; = Zle |

encourages solution x* to be sparse



L1 regularization: mechanical interpretation with large )\
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Least Squares with group L1 regularization
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encourages solution z* to be group sparse, i.e., most blocks

x; are zero
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Training two-layer neural networks: Non-convex optimization

Pnon-convex := minimize L (¢(XW1)W2, 1/) + A (||W1||% + ||W2||%’)
Wl c Rdxm
WQ c Rmxl

where ¢(u) is the activation function

12



Rectified Linear Unit (ReLU) and Threshold Activations

Pnon-convex ‘= minimize L (¢(XW1)W2, y) + )\ (“Wl”%' + HWQ“%)
Wl c Rdxm
W2 c Rmxl

where ¢(u) = ReLU(u) = max(0, u)
= sign(u)

o
-~

=

5/
|
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Neural Networks are Convex Regularizers

Pnon-convex := minimize L (¢(XW1)Wa,y) + A (|Wil|7 + [W2l|7)
W, € RXm
Wy € R™*1
Pconvex := minimize L (Z,y)+ A R(Z)
convex regularization
Z € K CRPP

14



Pnon-convex := minimize L (¢(XW1)W2; y) + A (||W1||%? + ||W2||%>
Wl c Rde
W2 c Rmxl

Pconvex := minimize L (Z,y)+ AR(Z)
Z € K C R&P
Theorem pnon-convex = Pconvex, and an optimal solution to pnon-convex
can be obtained from an optimal solution to pconvex.
M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact

Polynomial-time Convex Optimization Formulations for Two-Layer Networks.
ICML 2020, T. Ergen, I. Gulluk, J. Lacotte, M. Pilanci, ICLR 2023 15



ReLU Network using squared loss = group Lasso using fixed features

371T Y1
data matrix X € R"*¢ and label vector y € R"* X = : , Y=
, Yn

Pnon-convex = minimizeWhWQ

m 2
‘ D (X Wiy)Wa; — sz +A(IWE + (W2 )
j=1

p 2 p
peonvex = minimizey, ..y aperc | D2 DiX (i =) =y + A [ 3 lulla + il
i=1 i=1

Dy, ..., D, are fixed diagonal matrices

Theorem Pnon-convex = Pconvex, and an optimal solution to Pnon-convex Can be
recovered from optimal non-zero u}, v}, i = 1 ..,p as

Wi = i W = VIl or Wi = < Waj = =[5l
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Example: Convex Program for n = 3,d = 2

$1T U1
n = 3 samples X = x2T oy=| y
i Y3
2
ot zT 0
min o (ur—v)+ | 22 | (ug—v2)+ | 0 |(us—wv3)—y
xd 0 zd 9
3
subject to + )\(Z luill2 + Jlvill2)
i=1

DlXul Z O,Dlel Z 0
Dy Xuo > 0,D3Xv9 >0
D4XU3 Z O, D4X’Ug 2 0

equivalent to the non-convex two-layer NN problem 20



Computational Complexity

Learning two-layer ReLU neural networks with m neurons

flx) = 2200 Wad(Wiiz)

Previous results: o Combinatorial O(2™n%™) (Arora et al., ICLR 2018)

o Approximate O(2V™) (Goel et al., COLT 2017)

Convex program O((%)") where r = rank(X)

21



Computational Complexity

Learning two-layer ReLU neural networks with m neurons
flz) =327 Wajp(Wiiz)
Previous results: o Combinatorial O(2™n%™) (Arora et al., ICLR 2018)

o Approximate O(2V™) (Goel et al., COLT 2017)

Convex program O((%)") where r = rank(X)

n : number of samples, d : dimension
(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data = d. This can not be improved
unless P = NP even for m = 1. 2



Number of variables = number of hyperplane arrangements

o convex program has at most ((%)") variables

#activation patterns of a one neuron
= ’{sign(Xw) Tw € Rd}‘ < O((2)") where r = rank(X).

o rank is constant for convolutional networks

e.g., 3 x 3 x 1024 convolution = r =9 =— polynomial-time

23



ReLU Networks with Batch Normalization (BN)

o BN transforms a batch of data to zero mean and standard deviation one, and has

two trainable parameters a,

BN, (2) (I-21117)2 N
a~l®) = «
A= T,

2
Pnon-convex = __ min HBNa;y((ZS(XWl))WZ - ?JH +A (||W1H% + ||W2H%)
W1, Wa,a,y 2

p 9 p
o Ui — v — o+ A | |
peomvex = min H; (i =0~y + (;Ilwz\lg + Hvz||2>
where UZ»EZ»V,L-T = D; X is the SVD of DX;, i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci
Demystifying Batch Normalization in ReLU Networks, ICLR 2022
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Vector Output Two-layer ReLU: equivalent to nuclear norm penalty

min

s 2
| oxwaWa; = ||+ A (IWalE + [ Wall3)
Wi eREXm Wy cRm ¢ 2

Pnon-convex =

p 2 p
~  min DX (U = Vi) = y|_+ A D10l + Vil
ponvex = min HX; X(U=V) -yl (izlu e+ 1 Zr>

Dy, ..., D, are fixed diagonal matrices
Theorem pnon-convex = Pconvex, and an optimal solution to pnon-convex can be

recovered from optimal non-zero U/, V.*, i =1, ..., p.

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci Vector-output ReLU Neural
Network Problems are Copositive Programs, ICLR 2021
25



Three layer NN: FC-Relu-FC-Relu-FC is equivalent to a convex program with

double hyperplane arrangements

m

1
* .
p3 = min 5 D ((XW))pwij), wey —y
{Wyouj w1ty 20157
u; €B2,Vj
Theorem

The equivalent convex problem is

2

LB
+5 Z (W15 + llwisl13 +w3;)

2

2

B < /
min D Dj X — W) — + = E Wiillm + [|W;;

=1 j=1

9 i,j=1



Reducing Complexity: Approximating Convex Programs by Sampling

P ) P
Psampled-cvx = MiNMizeus us aupvpec || D2 DiX (i = vi) = | + MY wlla + i)
=1 =1

o sampled convex model: sample Dy, ..., Dj as Diag(Xwu > 0) where u ~ N(0, I)
o guarantee for two-layer ReLU NNs: (1 + %(X)) relative objective value

approximation using O((%)k) samples

>

o

o

3 60

(%)

<

D 58

b

o

;." 56 —— Convex
& -=--- Non-convex (m=256)
O 54

1632 64 128 256
Number of Sampled Hyperplanes / Neurons
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All stationary points correspond to sampled convex models

Pnon-convex = minimizeyw, w, L (¢(XW1)Wa,y) + A (||W1||% + ||W2H%)

Theorem Stationary points {x : 0 € conv {limy_y0o Vf(2k) | limg_oo xx = z, 1 € D} }

of pnon-convex are optimal solutions of the sampled convex program Psampled-cvx

Y. Wang, J. Lacotte, M. Pilanci. The Hidden Convex Optimization Landscape of
Two-Layer ReLU Neural Networks: an Exact Characterization of the Optimal Solutions

ICLR, 2022



Exact Convex Program: Two-Layer ReLU NN
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Figure: m =15

Training cost of a two-layer ReLU network trained with SGD (10 initialization trials)

and the convex program on a toy dataset (d = 2)
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Exact Convex Program: Classifying a subset of CIFAR-10
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Figure: Two-layer ReLU network trained with SGD (10 initialization trials) and the convex
program on a subset of CIFAR-10 for binary classification (n = 195)



Sampled Convex Model vs Non-convex Model (Stochastic Gradient Descent)
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10-class classification on the CIFAR Dataset (n = 50,000, d = 3072) with randomly
sampled arrangement patterns for the convex program



Re-training Final Convolutional Layers of Pretrained Deep Nets

COCO Person Detection Validation Accuracy (5 epochs)

Accuracy
e = o
N w S
N | L

o
=
L

—— convex: SGD - 20 learning rates in [1e-3, 1e-1]
nonconvex: SGD - 20 learning rates in [1le-3, le-1]

o
o
!

0 500 1000 1500 2000 2500 3000 3500
Iteration

Person detection task on the COCO Dataset containing 110,000 images of median
resolution 640 x 480. Two-layer ReLU CNN trained on pretrained MobileNetV3
features (convex PyTorch model: https://github.com/pilancilab/convex_nn)
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https://github.com/pilancilab/convex_nn)

Specialized Convex Solver: Performance Profile

10

o baseline: gradient based non-
convex optimization: SGD, ADAM En _______m/;::m__
(best of 10 random initializations ”;’ A
and 10 learning rates) z;
o convex: proximal gradient with g
adaptive acceleration o
O(1/T?) convergence rate B
Time (Seconds)
—v— Convex  —- Adam SGD
Performance profile showing the percentage of problems solved over a collection of 400

UC Irvine datasets up to 10~3 training error vs time *

“A. Mishkin, A. Sahiner, M. Pilanci. Fast Convex Optimization for Two-Layer ReLU
Networks, ICML 2022. github.com/pilancilab/scnn
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Interpreting Neural Networks via Convexity: Time Series Prediction
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Interpreting Neural Networks via Convexity: Time Series Prediction

p 9 p
Pconvex = MIiNIMizey, v, u, v,ek H D DX (u; —v;) — yH2 +A <Z Juill2 + Hvz‘Hz)
=1 =1

Ay

’\V .
[ J
< ol ®
< = °

\man MVAAA

v

Y

o sampled convex program: D; = diag(Xu; > 0), u; ~ N (0,I) forms a Locality
Sensitive Hash (Charikar, 2002)
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Layer-Wise Training of Deep Networks

(i) train a two-layer network convex optimization
(ii) fix the hidden layer to use as feature embedding
(ii) repeat two-layer network training on these features
o ideal for edge Al: low memory and low communication between blocks
o modular: networks can keep evolving, can terminate early during inference
o each convex model is trained to global optimality efficiently with no
hyperparameter tuning

40



Numerical results for layer-wise convex learning: CIFAR-10 image classification
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o end-to-end trained 5 layer CNN accuracy: 89%, 16 layer VGG accuracy: 92%



Convex Generative Adversarial Networks (GANSs)

Training Set Eﬂﬂﬂ Discriminator Real

Generator Foke image

o Wasserstein GAN parameterized with neural networks

pt=min max Eyup, [D(x)] = E.np. [D(G, (2))]

g D: 1-Lipschitz

~min  max  Eqep, [Dg,(2)] = Eony. Do, (G, (2))
g d

Theorem: Two-layer generator two-layer discriminator WGAN problems are
convex-concave games. Saddle-points exists and globally solvable under convex

parameterization. (Sahiner et al. Hidden Convexity of Wasserstein GANSs, "
ICLR 2022.)



Conclusion and Open Problems

Ref 1

Ref 2

neural networks are high-dimensional convex models. Convex optimization theory
& solvers can be applied.

we can have better specialized solvers (e.g., accelerated proximal gradient)
Extensions: autoencoders, transformers, diffusion models

Open problems: improving the sampler

M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact

Polynomial-time Convex Optimization Formulations for Two-Layer Networks.
ICML 2020

T. Ergen, M. Pilanci, Convex Geometry and Duality of Over-parameterized Neural
Networks. JMLR 2021
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two-layer Rel U-activation generator Gy, (Z) = (ZW1), Wa
two-layer quadratic activation discriminator Dy, (X) = (XV1)?V4

Wasserstein GAN problem is equivalent to a convex-concave game, which can be
solved via convex optimization

G* =argming |G|% s.t. [ XX —GTGll2 < A

Wi, W5 =argming, w, [Willz + [Wall% s.t. G* = (ZW1) 4 Wa,

the first problem can be solved via singular value thresholding as
G = U2 = AD)Y?VT where X = USV T is the SVD of X.

the second problem can be solved via convex optimization as shown earlier

a4



Progressive GANs

deeper architectures can be trained layerwise

7 W’f' ZW*

4 x 4 4 x4
X1




Numerical Results

o real faces from the CelebA dataset

b L SO, Y
(A A3 @Yﬂ;“

o fake faces generated using convex optimization

two-layer quadratic activation discriminator and linear generator trained via closed
form optimal solution progressively for a total of 4 layers
A. Sahiner et al. Hidden Convexity of Wasserstein GANs, preprint 2021
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Transformer and Attention-based Architectures

(¢]

based on the attention module

f(X)=0(XQTKX)XV

o

Q, K,V are trainable parameters: Q) : query, K : key, V : value

o}

used in transformers, vision transformers, mixer models...

There is a convex formulation®

o

YA Sahiner, T. Ergen, B. Ozturkler, M. Mardani, J. Pauly, M. Pilanci, ICML 2022
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Transfer Learning

o transfer learning without fine-tuning existing weights of the backbone network
o generate embeddings from an ImageNet pre-trained deep transformer model

o then finetune by training a two-layer attention block using convex optimization to
classify images from CIFAR-100, while leaving the pre-trained backbone fixed

58



Transfer Learning

o transfer learning without fine-tuning existing weights of the backbone network
o generate embeddings from an ImageNet pre-trained deep transformer model

o then finetune by training a two-layer attention block using convex optimization to
classify images from CIFAR-100, while leaving the pre-trained backbone fixed

o unified architecture: can be applied to any data (text, images, time series,
tabular data, multimodal data...)

o ideal for fine-tuning edge devices
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Two layer CNN with pooling: Conv-Pooling-Relu-FC is equivalent to /; penalty,
i.e., constrained Lasso min,cx ||®w — y||2 + Mw||;

2

1 m B m
. 2 2
py=_ min 1N (XUjwi;), wa; — 5 Z [wij]3 + w3;)
{uj w1 w2537 2 — 2 —
u]'EBQ,Vj J= 2 -
Theorem

Let X = XF and F € C%™? pe the DFT matrix. The equivalent convex problem is

B < /
E di ! — ) — }: . i
{wlrﬁ}m iag(S, w wl) Y +\/gi:1 (||wzH1+sz”1)
w; W) G(Cde

s.t. (2diag(S;) — I,)Xw; > 0, (2diag(S;) — I,)Xw] > 0, Vi,



Sampled Convex Model vs Non-convex Model for fine-tuning

COCO Person Detection Validation Accuracy (5 epochs)

0.8

0.6 1

Accuracy
o
>

0.24

—— convex: SGD - 20 learning rates in [1e-3, 1le-1]
0.0 nonconvex: SGD - 20 learning rates in [1e-3, le-1]

&) 260 460 660 860 1600 12‘00 14b0
Iteration
Person detection task on the Common Objects in Context Dataset (110,000 images of
median resolution 640 x 480).

Fine-tuning all layers of MobileNetV3 + convex and non-convex CNN head -
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