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Abstract

We propose a fast algorithm for computing the entire ridge regres-
sion regularization path in nearly linear time. Our method constructs
a basis on which the solution of ridge regression can be computed
instantly for any value of the regularization parameter. Consequently,
linear models can be tuned via cross-validation or other risk estima-
tion strategies with substantially better efficiency. The algorithm is
based on iteratively sketching the Krylov subspace with a binomial
decomposition over the regularization path. We provide a convergence
analysis with various sketching matrices and show that it improves
the state-of-the-art computational complexity. We also provide a tech-
nique to adaptively estimate the sketching dimension. This algorithm
works for both the over-determined and under-determined problems.
We also provide an extension for matrix-valued ridge regression. The
numerical results on real medium and large scale ridge regression
tasks illustrate the effectiveness of the proposed method compared
to standard baselines which require super-linear computational time.

Keywords: Ridge regression, randomized algorithms, kernel ridge regression.
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2 Sketching the Krylov Subspace

1 Introduction

We consider the following ridge regression problem

min
x∈Rd

1

2
‖Ax− b‖22 +

λ

2
‖x‖22, (1)

where A ∈ Rn×d is the data matrix, b ∈ Rd is the label vector and λ > 0 is a
regularization parameter.

Typically, one needs to estimate the regularization parameter λ from a set Λ
of possible values and select the λ with the best performance on the validation
set. For moderate size problem, to obtain an estimate for the regularization
parameter λ, one can apply risk estimators such as generalized cross-validation
[1], Stein’s unbiased risk estimate [2], or unbiased prediction risk estimate [3].
Moreover, solving this problem efficiently on a large scale is of great interest
in model selection [4] and transfer learning [5]. For instance, in deep learning-
based transfer learning, one needs to tune the last layer of a trained neural
network to adapt to a different dataset. Essentially, training the last layer of
the neural network is a ridge regression problem using squared loss, where the
previous layers of the neural network can be fixed as feature extractors of the
raw data.

Classical methods for solving ridge regression include Singular Value
Decomposition (SVD) method, warm-started conjugate gradient (CG)
method, warm-started preconditioned conjugate gradient (PCG) method, and
warm-started iterative Hessian (IHS) sketch method [6]. The SVD method
constructs a decomposition of the data matrix and provides a closed-form
parameterization of the optimal solution to (1) as a function of λ (see e.g.
[7]). The warm-started CG/PCG/IHS method iteratively solves (1) with
different values of the regularization parameter λ. They leverage previ-
ous solutions along the regularization path as initializers to warm-start the
iterations. Besides, for kernel ridge regression, Nyström computational regu-
larization (NCR) [8] applies the Nyström subsampling approaches to reduce
the computation cost for calculating the regularization path.

Method small T large T

IHS-BIN (Ours) O
(
d2ed+ (dde + nnz(A)) log

(
λmax
λmin

))
O(Td)

SVD O(nd2) O(Td2)
warm-started CG O(Tnnz(A)

√
κ) O(Tnnz(A)

√
κ)

warm-started PCG O(d2ed+ log(de)nnz(A)) O(Tnnz(A))
warm-started IHS O(d2ed+ log(de)nnz(A)) O(Tnnz(A))

NCR O(d2en) O(Td3e)

Table 1: Computational complexity of solving the ridge regression problem (1)
for T distinct values of the regularization parameter λ. Here κ is the condition
number of A+ λminI and de is effective dimension of A+ λminI.



Sketching the Krylov Subspace 3

In this paper, we present the iterative Hessian sketch method with binomial
decomposition (IHS-BIN) for rapidly solving ridge regression with multiple
regularization parameters. The idea is to approximate the linear opearator
(ATA+λI)−1 via a polynomial of λ constructed by the iterative Hessian sketch
method (IHS) [6]. To be specific, IHS is an efficient randomized algorithm for
solving large-scale least-square problems. We first focus on the overdetermined
case, where n > d, and then introduce an extension to the underdetermined
case n ≤ d. Suppose that the size of Λ is T and Λ ⊆ [λmin, λmax] with 0 <
λmin < λmax. We compare the computation cost of the proposed IHS-BIN
method with other classical solvers for ridge regression in Table 1. For the
case where T is large, IHS-BIN with the computation cost of O(Td) is the
fastest solver to the best of our knowledge. When T is small, IHS-BIN still
offers a substantial improvement in complexity. In Figure 1 and 2, we present
the results on a randomly generated data example and a matrix-valued ridge
regression problem with kernel matrix based on the CIFAR-10 dataset. We
can observe that IHS-BIN can be significantly faster than other solvers.

Fig. 1: Training loss, test loss and CPU time on randomly generated data.
n = 20000, d = 4000, m = 1600. λmin = 1. λmax = 100. ‘native’ is the native
linear system solver in NumPy.
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Fig. 2: Training loss, test loss and CPU time on the CIFAR10 dataset. Matrix-
valued kernel ridge regression. n = 25000, d = 25000,m = 10000. λmin = 0.1.
λmax = 10. We do not calculate the eigenvalues of ATA since d is large.

This paper is organized as follows. In section 2, we review classical methods
for solving ridge regression with multiple λs. As the motivation of IHS-BIN,
we introduce gradient descent with binomial decomposition in section 3. We
present IHS with binomial decomposition and analyze its convergence rate
with different sketching matrices in section 4. In section 5, we also provide
a practical method for estimating an appropriate sketching dimension and
extend our algorithm to the under-determined case and matrix-valued ridge
regression. The numerical results are presented in section 6.

2 Review of classical methods

We briefly review several classical methods for solving (1) with λ ∈ Λ, which
contains T distinct values. We focus on the case where n > d.

2.1 Singular value decomposition

Suppose that the singular value decomposition of A is given by A = UΣV T ,
where U ∈ Rn×d,Σ ∈ Rd×d and V ∈ Rd×d. Then, we can calculate the optimal
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solution to (1) by

x∗(λ) := (ATA+ λI)−1AT b = V (Σ2 + λI)−1ΣUT b

The above expression shows that x∗(λ) can be computed for all values of
λ when the decomposition factors are cached. The total computation cost
of the SVD based computation of the ridge regularization path is therefore
O(nd2)︸ ︷︷ ︸

SVD

+ O(d2T )︸ ︷︷ ︸
updating λ

.

2.2 Warm-started conjugate gradient method

Suppose that we arrange λ ∈ Λ in decreasing order. Then, we can apply the
conjugate gradient method to solve (1) with λ ∈ Λ from large to small values
of λ. We can use the solution for (1) with larger λ as initialization for the next
value of λ. From [9], the overall computational cost is given by

O(Tnnz(A)
√
κ log(1/ε)).

Here nnz(A) denotes the number of non-zero elements in A, ε is the toler-
ance of precision to stop the conjugate gradient method and κ = (σmax(A) +
λmin)/(σmin(A) + λmin) is the largest condition number of A+ λI with λ ∈ Λ.
We let σmax(A) and σmin(A) to represent the largest/smallest singular value
of A.

2.3 Warm-started preconditioned conjugate gradient
method

It is well known that the number of iterations of warmed-started CG heav-
ily depends on the condition number κ. For ill-conditioned data matrices, the
condition number κ may be very large, which leads to slow convergence of
the conjugate gradient method, even using the warm-starts. A widely-applied
approach to deal with the large condition number κ is to apply a randomized
preconditioned conjugate gradient (PCG) method [10]. Specifically, we use the
random matrix (ATSTSA+ λI)−1 as the preconditioner, where S ∈ Rm×n is
a sketching matrix. The sketching dimension m is usually proportional to the
effective dimension de, which will be discussed in detail in section 4.2. To cal-
culate the preconditioner (ATSTSA+λI)−1 for various λ, we usually compute
the SVD of SA, which takes O(d2ed) time. The computational cost of comput-
ing SA can be O(log(de)nnz(A)), depending on the type of the sketch as shown
in section 4. Given the preconditioner (ATSTSA+ λI)−1, the computational
cost of warm-started PCG is given by

O(Tnnz(A) log(1/ε)).
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2.4 Warm-started iterative Hessian sketch

The iterative Hessian sketch (IHS) method [6] is a randomized sketching
method for solving least square problems. The update rule of IHS follows

xk+1 =xk − τ(ATSTSA+ λI)−1AT (Axk − b+ λxk) (2)

Here τ > 0 is the step size. Similarly, to compute (ATSTSA + λI)−1 for
various λ, usually we compute the SVD of SA, which takes O(d2ed) time. With
carefully chosen sketching dimension and sketching matrix, IHS can converge
in O(log(1/ε)) iterations. Although IHS is simpler, the computational cost of
IHS is similar to the PCG method, which is given by

O(Tnnz(A) log(1/ε)).

We note that the above complexity can be high for large data matrices, espe-
cially when T , the number of points in the regularization path is also large. In
contrast, the proposed approach has complexity O(Td log(1/ε)), which can be
significantly smaller when n is large.

3 Gradient descent regularization path

Now we illustrate the main idea underlying our algorithm. Note that gradi-
ent descent method with fixed step size for a small number of iterations can
approximate the minimizer of (1). Although this will not be practical, our
proposed method is inspired by this approach. Namely, consider the updates

xk+1 = xk − τ
(
AT (Axk − b) + λxk

)
= (I − τ(ATA+ λI))xk + τAT b

=: Mxk + τAT b.

Here we denote M = (I − τ(ATA + λI)). We can express xk in terms of M
and x0 by

xk = Mkx0 + τMk−1AT b+ τMk−2AT b+ · · ·+ τAT b.

The binomial expansion formula for Mk is given by

Mk =

k∑
j=0

(
k

j

)
λj(−τ)j(I − τATA)k−j .
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For simplicity, we assume that the iterations are initialized at x0 = 0. Then,
we can rewrite xk as

xk =τ

k−1∑
i=0

M iAT b

=τ

k−1∑
i=0

i∑
j=0

(
i

j

)
λj(−τ)j(I − τATA)i−jAT b

=τ

k−1∑
j=0

(−τλ)j
k−1−j∑
i=0

(
i+ j

j

)
(I − τATA)iAT b

=τ

k−1∑
j=0

(−τλ)juj .

Here we denote uj =
∑k−1−j

i=0

(
i+j
j

)
(I − τATA)iAT b. Note that the above

expression provides an approximate closed form formula for x(λ) for all values
of λ. More specifically, if we compute u0, . . . , uk−1, we can instantly compute
xk = xk(λ) for different λ parameters. We call this method GD-BIN and
summarize it in Algorithm 1.

Input: A, b,Λ = {λi}Ti=1, iteration number k.

Compute uj =
∑k−1−j

i=0

(
i+j
j

)
(I − τATA)iAT b for j = 0, . . . , k − 1; for

i = 1, . . . , T do

Compose xi = τ
∑k−1

j=0 (−τλi)juj ;
end
Output: {xi}Ti=1

Algorithm 1: Gradient descent with binomial decomposition. (GD-BIN)

However, the convergence rate heavily depends on the condition num-
ber κ of ATA + λminI. To obtain an ε-approximate solution to (1), it takes
approximately k = O(log(1/ε)κ) iterations. The overall computation cost is as
follows

O(ndk)︸ ︷︷ ︸
compute (I−τATA)iAT b and bj

+ O(Tdk)︸ ︷︷ ︸
evaluate xk

= O(nd(log(1/ε)κ)︸ ︷︷ ︸
compute (I−τATA)iAT b and bj

+O(Td(log(1/ε)κ)︸ ︷︷ ︸
evaluate xk

The main drawback of the gradient descent method is the condition number
κ in the computation cost, which is often prohibitively large in practice. It is
interesting to note that the dependence on condition number can be improved
to
√
κ using Conjugate Gradient. However, the corresponding regularization

path is no longer tractable due to non-constant step-sizes and λ can not be
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updated analogously. To circumvent these difficulties and the dependence on κ,
we take a different approach and introduce the Iterative Hessian sketch (IHS)
with binomial decomposition.

4 IHS with binomial decomposition

Suppose that S ∈ Rm×n is a sketching matrix, where m is the
sketching dimension. IHS [6] employs a randomized Newton direction
((∇2f)1/2)TSTS(∇2f)1/2)−1∇f(x) to minimize the objective function f(x)
in (1). The sketching dimension m depends on the effective dimension of
ATA+ λI, which will be defined later and it can be significantly smaller than
d. Typical choices of sketching matrices include

• Gaussian sketch: each entry of S follows independent and identically
distributed (i.i.d.) Gaussian distribution N (0,m−1).

• CountSketch transform sketch [11]: S is initialized as a matrix of zeros.
Then, w set Sh(i),i to 1 or −1 with equal probability, where h(i) is chosen
from {1, . . . , n} uniformly at random.

• Sparse Johnson-Lindenstrauss Transform (SJLT) sketch [12]: with column
sparsity s, S is constructed by concatenating s independent CountSketch
transforms, each of dimension m/s× n.

• Subsampled Randomized Hadamard Transform (SRHT) sketch [13]: S is
a randomized projection matrix.

The update rule of IHS with a fixed regularization parameter is given by

xk+1 =xk − τ(ATSTSA+ λ0I)−1AT (Axk − b+ λxk)

=(I − τ(ATSTSA+ λ0I)−1(ATA+ λI)xk

+ τ(ATSTSA+ λ0I)−1AT b

=Mxk + τ(ATSTSA+ λ0I)−1AT b.

(3)

Here λ0 is a fixed parameter. In this case, M = I−τ(ATSTSA+λ0I)−1(ATA+
λI).

Based on the update rule of IHS, we can express xk in terms of M and x0
via

xk =Mkx0 + τMk−1(ATSTSA+ λ0I)−1AT b

+ · · ·+ τ(ATSTSA+ λ0I)−1AT b.

For simplicity, we also assume that the iterations are initialized at x0 = 0. We
denote PS = (ATSTSA+ λ0I)−1.

Proposition 1 We can express xk as a polynomial function of λ as follows

xk = τ

k−1∑
j=0

(τλ)j ũj ,
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Here ũj =
∑k−1
i=j ui,j , where ui,j ∈ Rd can be recursively computed via

ui+1,0 = (I − τPSATA)ui,0, ui+1,i+1 = −PSui,i,

ui+1,j = (I − τPSATA)ui,j − PSui,j−1, 1 ≤ j ≤ i,
(4)

with the initial condition u0,0 = PSA
T b.

Proof We first claim that for all integer i ≥ 0,

M iPSA
T b =

i∑
j=0

(τλ)jui,j . (5)

We prove this claim by mathematical induction. It is easy to observe that (5) hold
for i = 0. Suppose that (5) holds for i. For i+ 1, we note that

M i+1AT b = M(M iAT b)

=

i∑
j=0

(
(τλ)j(I − PSATA)ui,j − (τλ)j+1PSui,j

)

=

i∑
j=1

(τλ)j
(

(I − PSATA)ui,j − PSui,j−1
)

+ (I − PSATA)ui,0 − (τλ)i+1PSui,i

=

i+1∑
j=0

(τλ)jui+1,j .

Hence, (5) also holds for i+ 1.
As a result, we can easily compute that

xk =

k−1∑
i=0

τM iPSA
T b = τ

k−1∑
i=0

i∑
j=0

(τλ)jui,j = τ

k−1∑
j=0

(τλ)j ũj .

�

To compute (ATSTSA + λ0I)−1, we perform the singular value decom-
position on SA, i.e., SA = U1Σ1V1. Suppose that m < d. Then, we
have

(ATSTSA+ λ0I)−1 = V T1 (Σ2
1 + λ0I)−1V1 + λ−10 (I − V T1 V1).

Thus, for an arbitrary v ∈ Rd, we have

(ATSTSA+ λ0I)−1v = v/λ0 + V T1 ((Σ2
1 + λ0I)−1 − λ−10 )V1v.

For m ≥ d, then, we have

(ATSTSA+ λ0I)−1v = V T1 (Σ2
1 + λ0I)−1V1v.
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Input: A, b, PS , τ, k.
Set ui = 0 and ũi = 0 with i = 0, . . . , k − 1;
Calculate u0 = −PSAT b;
Let ũ0 = ũ0 + u0;
for i = 1 to k − 1 do

Calculate ui = −PSui−1;
for j = i− 1 to 1 do

Calculate uj = uj − PS(τATAuj + uj−1);
end
Calculate u0 = u0 − PSτATAu0;
Update ũj = ũj + uj for j = 0, . . . , i;

end

Output: {ũj}k−1j=0

Algorithm 2: Calculation of basis ũ0, . . . , ũk−1 for binomial decomposi-
tion.

We summarize the calculation of ũ0, . . . , ũk−1 in Algorithm 2. For com-
puting the sketching SA, we list the computation cost for different sketching
matrix as follows:

• Gaussian sketch: O(mnd) or O(mnnz(A)) for a sparse matrix.
• SRHT sketch: O(log(m)nd) or O(log(m)nnz(A)) for a sparse matrix.
• SJLT sketch: O(snd) or O(snnz(A)) for a sparse matrix. Here s is the

sparsity of SJLT sketch.
As the sketching dimension is proportional to the effective dimension de, which
can be significantly smaller than d, here we assume that m < d. Hence,
the computation cost to compute the SVD of SA is O(m2d). Ignoring the
complexity of sketching, the computation cost of IHS-BIN follows

O(m2d)︸ ︷︷ ︸
SVD of SA

+O((md+ nd)k2)︸ ︷︷ ︸
compute ũj

+ O(Tdk)︸ ︷︷ ︸
evaluate xk

.

For a sparse matrix A, the computation cost reduces to

O(m2d)︸ ︷︷ ︸
SVD of SA

+O((md+ nnz(A))k2)︸ ︷︷ ︸
compute ũj

+ O(Tdk)︸ ︷︷ ︸
evaluate xk

.

The overall algorithm is summarized in Algorithm 3.

4.1 Sharp estimates of extreme eigenvalues of CS

We review serveral sharp estimates of γ1, γd and discuss the probability that
ES holds. For the Gaussian case, we have the following theorem introduced in
[14].
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Input: A, b,Λ = {λi}Ti=1, iteration number k.
Generate the sketching matrix S and compute the SVD of SA; for
i = 1, . . . , T do

Compute {ũj}k−1j=0 using Algorithm 2; Compose

xi = τ
∑k−1

j=0 (τλi)
j ũj ;

end
Output: {xi}Ti=1

Algorithm 3: Iterative Hessian Sketch with binomial decomposition.
(IHS-BIN)

Theorem 2 Suppose that S ∈ Rm×n is a Gaussian sketching matrix. Consider de
defined in (7) and a parameter ρ ∈ (0, 1). If m ≥ de/ρ, then for any η ∈ (0, (1 −
√
ρ)2/4), with c(η) =

(
1+
√
η

1−√η

)2
andρ1 = 1− ‖D‖22 + ‖D‖22(1 +

√
ρ)2(1 +

√
η)2,

ρ2 = 1− ‖D‖22 + ‖D‖22
(

1−
√
c(η)ρ

)2
,

the event ES holds with probability at least 1− 16e−η
2ρm/2

For the SJLT sketching, following Lemma 3.3 in [15], we have an estimate
on ρ1 and ρ2.

Theorem 3 Suppose that S ∈ Rm×n is an SJLT sketching matrix with sparsity

s = Ω(logα(de/δ)/ε) (6)

in each column where α > 2, δ < 1/2, ε < 1/2. If the sketch size satisfies

m = Ω(αde logα(de/δ)/ε
2),

then, with probability at least 1− δ, the event ES holds.

For the SRHT case, we introduce the relevant factor

C(m, de) =
16

3

1 +

√
8 log(den)

de

2

.

The following theorem in [14] provides a sharp estimate on ρ1 and ρ2.

Theorem 4 Suppose that S ∈ Rm×n is an SRHT sketching matrix. Consider de

defined in (7) and a parameter ρ ∈ (0, 1). If m ≥ C(n, de)
de log(de)

ρ . Then, it holds

with probability at least 9/de such that ES hold with ρ1 = 1 + ‖D‖22ρ and ρ2 =
1− ‖D‖22ρ.
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4.2 Convergence analysis

In this subsection, we analyze the convergence rate of IHS with binomial
decomposition. We first introduce some notations. Suppose that A = UΣV T

is the singular value decomposition and let σ1 ≥ · · · ≥ σd denote sin-

gular values of A. Let Ā =

[
A√
λ0I

]
, Ã =

[
A√
λI

]
. Let Ū be a matrix

of left singular vectors of Ā. For λ0 ≥ 0, we introduce a diagonal matrix

D = diag

(
σ1√
σ2
1+λ0

, . . . , σd√
σ2
d+λ0

)
and define the effective dimension by

de =
‖D‖2F
‖D‖22

. (7)

This will influence the sketching dimension, which will be discussed in detail
later. Define

Σ̄ = diag

(√
σ2
1 + λ0, . . . ,

√
σ2
d + λ0

)
,

Σ̃ = diag

(√
σ2
1 + λ, . . . ,

√
σ2
d + λ

)
.

Denote S̄ =

[
S 0
0 Id

]
. We define two matrices

C̃S = Σ̃−1Σ̄CSΣ̄Σ̃−1, CS = ŪT S̄T S̄Ū .

Denote γ1, γd to be the largest/smallest eigenvalue of CS . For two real numbers
ρ1 > ρ2 > 0, we define the S-measurable event ES = {ρ2 ≤ γd ≤ γ1 ≤ ρ1}. We
evaluate the error by δk = 1

2‖Ã(xk − x∗)‖2.

Theorem 5 Suppose that we solve (1) for λ ∈ [λmin, λmax]. Denote κ̃ = ρ1λmax

ρ2λmin
. By

setting λ0 =
√
λmaxλmin and taking α = 2

√
ρ−11 ρ−12 /(

√
κ̃+
√
κ̃−1), then, conditioned

on the event ES , the IHS-BIN satisfies that at each iteration

δk+1

δk
≤
(
κ̃− 1

κ̃+ 1

)2

.

Remark 1 If we can estimate the smallest singular value σd of A, we can refine the

convergence rate as follows. Denote κ̂ =
ρ1(λmax+σ

2
d)

ρ2(λmin+σ2
d)

. Assume that we set λ0 =√
(λmax + σ2d)(λmin + σ2d)−σ2d and take a constant step size α = 2

√
ρ−11 ρ−12 /(

√
κ̂+

√
κ̂−1). Then, conditioned on the event ES , the IHS-BIN satisfies that at each

iteration
δk+1

δk
≤
(
κ̂− 1

κ̂+ 1

)2

.
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We also note that the convergence only depends on the event ES . In other
words, as long as the event ES is satified, we have the convergence guarantee
for solving every ridge regression problem along the entire regularization path.

Denote β = λmaxλ
−1
min. Thus, to reach an ε precision solution, it takes

k = O(log(1/ε)κ̃) = O(log(1/ε)β) iterations. When β is large, the iteration
number k can be large, which may not be efficient.

To deal with this problem, we split [λmin, λmax] into L smaller intervals

[λ(0), λ(1)], [λ(1), λ(2)], . . . , [λ(L−1), λ(L)].

Here we let λ(i) = λminβ
i/L. For each small interval [λ(i), λ(i+1)], it takes

approximately k = O(log(1/ε)β1/L) iterations to reach an ε precision solution.
Compared to the computation cost in computing basis ũj , the computation
cost of computing SA and performing SVD of SA is negligble. Hence, the
major computation cost follows

O(L(md+ nd) log(1/ε)2β2/L)︸ ︷︷ ︸
compute ũj L times

+O(Td log(1/ε)β1/L)︸ ︷︷ ︸
evaluate xk

.

Suppose that we take L = b2 log βc. Then, the computation cost writes

O((md+ nd) log β log(1/ε)2)︸ ︷︷ ︸
compute ũj L times

+O(Td log(1/ε))︸ ︷︷ ︸
evaluate xk

.

Similarly, if A is a sparse matrix, then the computation cost follows

O((md+ nnz(A)) log β log(1/ε)2)︸ ︷︷ ︸
compute ũj L times

+O(Td log(1/ε))︸ ︷︷ ︸
evaluate xk

.

Namely, we can improve the dependence of β in computing binomial basis ũj
from β2 to log β.

4.3 Proof of Theorem 5

For the update rule, we have

xk+1 = xk − α
(
ĀT S̄T S̄Ā

)−1
ÃT (Ãxk − b̄).

We use the notation et = ŨT Ã(xk − x∗). Here x∗ is the unique minimizer of

min
x∈Rd

1

2
‖Ax− b‖22 +

λ

2
‖x‖22. (8)
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We obtain that

ek+1 =ek − αŨT Ã
(
ĀT S̄T S̄Ā

)−1
ÃT Ũek

=
(
I − αΣ̃(Σ̄ŪT S̄T S̄Ū Σ̄)−1Σ̃

)
ek

=(I − αC̃−1S )ek.

We note that √
δk+1 =‖ek+1‖2 ≤ ‖I − αC̃−1S ‖2‖ek‖2

=‖I − αC̃−1S ‖2
√
δk.

Then, the convergence rate depend on the condition number of C̃S . For the
rest of the proof, we assume that the event ES holds. Based on the estimations
ρ1, ρ2 for the extreme eigenvalues of CS , we define ρ̃1(λ) > ρ̃2(λ) > 0 as
follows: if λ ≥ λ0, we let

ρ̃2(λ) =
σ2
d + λ0
σ2
d + λ

ρ2, ρ̃1(λ) =
σ2
1 + λ0
σ2
1 + λ

ρ1.

Otherwise, if λ ≤ λ0, we let

ρ̃2(λ) =
σ2
1 + λ0
σ2
1 + λ

ρ2, ρ̃1(λ) =
σ2
d + λ0
σ2
d + λ

ρ1.

Hence, the extreme eigenvalues of C̃S is bounded in [ρ̃2(λ), ρ̃1(λ)]. Hence, the
convergence rate follows√

δk+1

δk
≤ max{|1− α̃ρ1(λ)−1|, |1− αρ̃2(λ)−1|}.

For λ ∈ [λmin, λmax], we want to minimize the worst convergence rate:

min
α>0,λ0∈[λmin,λmax]

max
λ∈[λmin,λmax]

max{|1− αρ̃1(λ)−1|, |1− αρ̃2(λ)−1|}.

For λ ≥ λ0, we have

ρ̃2(λ) =
σ2
d + λ0
σ2
d + λ

ρ2, ρ̃1(λ) =
σ2
1 + λ0
σ2
1 + λ

ρ1,

which yields
ρ̃2(λmax) ≤ ρ̃2(λ) ≤ ρ̃1(λ) ≤ ρ̃1(λmax).

This indicates that

max
λ∈[λ0,λmax]

max{|1− αρ̃1(λ)−1|, |1− αρ̃2(λ)−1|}

= max{|1− αρ̃1(λmax)−1|, |1− αρ̃2(λmax)−1|}.
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For λ ≤ λ0, similarly, we have

ρ̃2(λ) =
σ2
1 + λ0
σ2
1 + λ

ρ2, ρ̃1(λ) =
σ2
d + λ0
σ2
d + λ

ρ1.

This indicates that

max
λ∈[λmin,λ0]

max{|1− αρ̃1(λ)−1|, |1− αρ̃2(λ)−1|}

= max{|1− αρ̃1(λmin)−1|, |1− αρ̃2(λmin)−1|}.

We further notice that

ρ̃2(λmax) ≤ ρ2 ≤ ρ̃2(λmin), ρ̃1(λmax) ≤ ρ1 ≤ ρ̃1(λmin).

In short, we have

max
λ∈[λmin,λmax]

max{|1− αρ̃1(λ)−1|, |1− αρ̃2(λ)−1|}

= max
{∣∣1− ρ̃2(λmax)−1α

∣∣ , ∣∣1− ρ̃1(λmin)−1α
∣∣}

= max

{∣∣∣∣1− σ2
d + λmax

σ2
d + λ0

ρ−12 α

∣∣∣∣ , ∣∣∣∣1− σ2
d + λmin

σ2
d + λ0

ρ−11 α

∣∣∣∣} .
The above quantity is minimized when

α/(λ0 + σ2
d) = 2

(
(σ2
d + λmin)ρ−11 + (σ2

d + λmax)ρ−12

)−1
.

Thus, by taking λ0 =
√

(λmax + σ2
d)(λmin + σ2

d) − σ2
d, the optimal step size

follows α = 2
√
ρ−11 ρ−12 /

(√
κ+
√
κ−1

)
. In summary, we have

√
δk+1

δk
≤ min
α>0,λ0∈[λmin,λmax]

max
λ∈[λmin,λmax]

max{|1− αρ̃1(λ)−1|, |1− αρ̃2(λ)−1|}

=
κ− 1

κ+ 1
.

For the case where σd is unknown, since

λmax

λ0
ρ−12 ≥ σ2

d + λmax

σ2
d + λ0

ρ−12 ≥ σ2
d + λmin

σ2
d + λ0

ρ−11 ≥ λmin

λ0
ρ−11 ,
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we can relax the bound as follows

max

{∣∣∣∣1− σ2
d + λmax

σ2
d + λ0

ρ−12 α

∣∣∣∣ , ∣∣∣∣1− σ2
d + λmin

σ2
d + λ0

ρ−11 α

∣∣∣∣}
≤max

{∣∣∣∣1− λmax

λ0
ρ−12 α

∣∣∣∣ , ∣∣∣∣1− λmin

λ0
ρ−11 α

∣∣∣∣} .
Similarly, the above quantity is minimized when α/(λ0) =

2
(
λminρ

−1
1 + λmaxρ

−1
2

)−1
. For λ0 =

√
λminλmax, the optimal step size writes

α = 2
√
ρ−11 ρ−12 /

(√
κ̃+
√
κ̃−1

)
. We then have

√
δk+1

δk
≤ min
α>0,λ0∈[λmin,λmax]

max
λ∈[λmin,λmax]

max{|1− αρ̃1(λ)−1|, |1− αρ̃2(λ)−1|}

=
κ̃− 1

κ̃+ 1
.

5 Estimation of the effective dimension and
extensions of IHS-BIN

5.1 Estimation of the effective dimension

From previous theorems, an appropriate sketching size depends on the effective
dimension de. Nevertheless, in practice, usually the estimation of de is available
when de is small, see [16]. Following the adaptive method described in [14], we
propose a practical method for finding an appropriate sketching size.

We apply IHS to solve (1) with λ = λmin. In k-th iteration, we first calculate
the direction

dk = (ATSTSA+ λminI)−1AT (Axk − b+ λminxk).

Then, we calculate a step size τk = γj1 satisfying the Armijo condition. Namely,
j is the smallest non-negative integer satisfying

f(xk − γj1dk) ≤ f(xk)− γ2γj1dTk∇f(xk). (9)

Here we write f(x) = 1
2‖Ax−b‖

2
2+ λmin

2 ‖x‖
2
2 and γ1, γ2 ∈ (0, 1) are parameters.

Then, we update xk+1 = xk − τkdk.
We evaluate the following quantity per iteration

δ̃k = dTkA
T (Axk − b+ λminxk).
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If δ̃k+1 ≥ γ3δk for some γ3 > 0, then, we let m = 2m and sample the sketch-
ing matrix. We stop the algorithm when δ̃k < ε for some ε > 0. The whole
algorithm is described in Algorithm 4.

Input: A, b, x0, λmin, ε, γ1, γ2, γ3.
Set k = 0. Compute d0 and δ̃0;

while δ̃k > ε do

Calculate a step size τk = γj1 satisfying the Armijo condition (9);
Update xk+1 = xk − τkdk;

Calculate dk+1 and δ̃k+1;

end

if δ̃k+1 ≥ γ3δk then
Set m = 2m and sample the sketching matrix S;
Recompute dk based on S;

else
Set k = k + 1;

end
Output: m

Algorithm 4: Adaptive estimation of sketching dimension

5.2 Extension to the under-determined case

For the under-determined case where n < d, we consider the dual problem of
(1):

min
z∈Rm

1

2
‖AT z‖2 +

λ

2
‖z‖2 − bT z. (10)

The optimal solution z to the dual problem is related to the optimal solution
to the primal problem by

v = AT z.

Hence, we can apply similar methods in the under-parameterized case to solve
(10).

5.3 Extension for matrix-valued ridge-regression

Consider the following matrix-valued ridge-regression problem:

min
x∈Rd×K

1

2
‖AX −B‖2F +

λ

2
‖X‖2F , (11)

where A ∈ Rn×d and B ∈ Rn×K . We can easily extend IHS-BIN for solving
this problem.
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Input: A,B, PS , τ, k.
Set Ui = 0 and Ũi = 0 with i = 0, . . . , k − 1;
Calculate U0 = −PSATB;

Let Ũ0 = Ũ0 + U0;
for i = 1 to k − 1 do

Calculate Ui = −PSUi−1;
for j = i− 1 to 1 do

Calculate Uj = Uj − PS(τATAUj + Uj−1);
end
Calculate U0 = U0 − PSτATAU0;

Update Ũj = Ũj + Uj for j = 0, . . . , i;

end

Output: {Ũj}k−1j=0

Algorithm 5: Calculation of basis ũ0, . . . , ũk−1 for IHS-BIN with matrix-
valued ridge regression.

Input: A, b,Λ = {λi}Ti=1, iteration number k.
Generate the sketching matrix S and compute the SVD of SA;
for i = 1, . . . , T do

Compute {Ũj}k−1j=0 using Algorithm 5;

Compose Xi = τ
∑k−1

j=0 (τλi)
jŨj ;

end
Output: {Xi}Ti=1

Algorithm 6: IHS-BIN with matrix-valued ridge regression.

Neglecting the computation cost of computing SA, the computation cost
of IHS-BIN becomes

O(m2d)︸ ︷︷ ︸
SVD of SA

+O(K(md+ nd) log β log(1/ε)2)︸ ︷︷ ︸
compute ũj L times

+O(TKd log(1/ε))︸ ︷︷ ︸
evaluate xk

,

for a dense matrix A, or

O(m2d)︸ ︷︷ ︸
SVD of SA

+O(K(md+ nnz(A)) log β log(1/ε)2)︸ ︷︷ ︸
compute ũj L times

+O(TKd log(1/ε))︸ ︷︷ ︸
evaluate xk

,

for a sparse matrix A. For comparison, the computation cost of SVD-based
method follows

O(n2d)︸ ︷︷ ︸
SVD

+O(d2KT ).

The computation cost of CG-based method writes

O(TKnd
√
κ log(1/ε)) or O(TKnnz(A)

√
κ log(1/ε)).
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6 Numerical results

In this section, we present numerical comparisons between IHS-BIN and other
methods for solving least-square problems with various regularization param-
eters. We test over randomly generated data and real data. For real data, we
collect datasets from LIBSVM1 under the modified BSD license. We randomly
split half of the data matrix as the training data A and the other as the test
data matrix Ã. We denote b and b̃ as the corresponding labels of A and Ã.
All numerical experiments are conducted on a Dell PowerEdge R840 worksta-
tion (64 core, 3TB ram). Detailed setups for the datasets and algorithms are
given in the appendix. We provide numerical comparisons with the following
baseline algorithms. SVD: the Singular Value Decomposition based method.,
native: the native linear system solver in NumPy, CG: warm-started Conju-
gate Gradient method. For IHS-BIN, we use the SJLT sketching matrices with
sparsity 1. The code can be found in https://github.com/pilancilab/IHS-BIN.

6.1 Datasets setup in the numerical experiments

For the randomly generated data, each row of A follows N (0,Σ2/
√
nd), where

Σi,j = αi-j. Here we let α = 0.99. The training loss and the test loss follows

Ltrain =
1

2
‖Av − b‖22 +

λ

2
‖v‖2, Ltest =

1

2
‖Ãv − b̃‖22.

Here each row of Ã follows N (0,Σ2/(nd)). And we let

b = Av∗ + η, b̃ = Ãv∗ + η̃.

Here v∗ ∼ N (0, Id/d) and η, η̃ ∼ N (0, σ2) where σ > 0 is a parameter.
For real data, we linearly rescale the entry of A into [−1, 1]. Besides, for

CIFAR10, we use the kernel matrix in ridge regression. Namely, A is the kernel
matrix formulated by the training data and Ã is the kernel matrix formulated
by the training data and test data. In short, we have

Ai,j = k(fi, fj), Ãi,j = k(f̃i, fj),

where k(x, y) : Rd × Rd → R is a positive definite kernel function, fi is the
feature vector of i-th training sample and f̃j is the feature vector of j-th test
sample. Here we use an isotropic Gaussian kernel function

k(x, y) = (2πh)−d/2 exp(− 1

2h
‖x− y‖22),

with bandwidth h = 1000.
For IHS-BIN, we split the interval [λmin, λmax] into L = b2 log(λmax/λmin)c

small intervals.

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

https://github.com/pilancilab/IHS-BIN
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6.2 Over-determined case

We present numerical results on randomly generated data and real data in
Figure 1, 3 and 4. In Figure 2, we present results on matrix-valued ridge
regression with kernel matrix. For the problem with medium-size d (randomly
generated data), we plot the eigenvalues of ATA. The curves of train loss
and test loss from IHS-BIN overlap with curves from other solvers. This indi-
cates that IHS-BIN yields correct solutions along the regularization path. For
medium-scale problems like randomly generated data and real-sim, CG and
IHS-BIN outperform SVD and native. For the large-scale problem avazu and
matrix-valued ridge regression, IHS-BIN can be significantly faster than CG.

Fig. 3: Training loss, test loss and time. Real vs. Simulated (real-sim). n =
36000, d = 20958,m = 8000. λmin = 100. λmax = 104. We do not calculate the
eigenvalues of ATA since d is large.

6.3 Under-determined case

We also perform numerical comparisons on under-determined data matrices.
We present numerical results in Figure 5 to Figure 9. For the problems with
medium-size n (randomly generated data, gisette, RCV1, tifdf), we plot the
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Fig. 4: Training loss, test loss and time. Avazu’s Click-through Prediction
(avazu). n = 200000, d = 50000,m = 10000. λmin = 1. λmax = 100. We do not
calculate the eigenvalues of ATA since d is large.

eigenvalues of AAT . Similar to the over-determined case, IHS-BIN is faster
than other compared methods, especially for large0scale examples. The curves
of train loss and test loss from IHS-BIN overlap with curves from other solvers,
which implies the accuracy of IHS-BIN.

7 Conclusion

We presented IHS-BIN for rapidly computing the entire ridge regularization
path. The algorithm is based on analyzing the gradient descent regulariza-
tion path and accelerating convergence via randomized sketching. Our method
improves the state-of-the-art computational complexity of obtaining the solu-
tion of ridge regression for T values of the regularization parameter from
O(Td2) or O(Tnnz(A)) to O(Td), when T is large. The numerical experi-
ments also demonstrate that IHS-BIN is significantly faster than other solvers,
especially for large-scale problems. Our method also leverages the low effec-
tive dimensionality of real datasets, which can be used to reduce the sketching
dimension. We also investigated adaptively picking the sketch dimension based
on the progress of the algorithm. We believe that our algorithm will be quite
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Fig. 5: Training loss, test loss and time. MNIST with quadratic feature embed-
ding. n = 30000, d = 608400,m = 10000. λmin = 0.1. λmax = 10. We do not
calculate the eigenvalues of AAT since n is large.

effective in automatically tuning the regularization parameters of linear mod-
els. Moreover, our method can be used in transfer learning and deep feature
embedding for training a final linear layer and tuning the regularization param-
eter efficiently. One potential limitation of the proposed approach is that for
medium-size data matrices with high effective dimensions, direct methods such
as SVD can be more effective.
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