Discussion of "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis"
by Xavier Gabaix & Ralph Koijen

Monika Piazzesi
Stanford, CEPR & NBER

NBER Monetary Economics Spring Meeting 2022
Research agenda in macro-finance

- wanted: model s.t.
 - volatility in asset prices (stocks, houses, bonds, etc)
 - financial intermediaries
 - microfounded to allow for welfare analysis

- intermediated investments are often mechanical
 - funds have mandates (for example, constant portfolio shares)

- good amplification mechanism for small aggregate shocks?
Contribution

- key new statistic: price-elasticity of stock demand
- empirical strategy to estimate this statistic from Gabaix-Koijen (2020)
- fascinating empirical finding:
 - price-elasticity of aggregate stock demand is low: $-\frac{1}{5}$
 - flipside: more demand for stocks has big price impact, multiple of 5! another dollar spent on stocks pushes stock values up by 5 dollars
- model that explains inelastic demand for stocks and volatility
Discussion

- How does the model explain inelastic stock demand and volatility?
- Relate to existing work on mechanical investing
- Next steps
Lucas Tree Model

- rep agent with standard preferences
 \[E \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma} \]

- endowment stream \(\Omega_t \)

- stock pays dividend stream \(D_t \)

- total supply of goods \(Y_t = \Omega_t + D_t \), with iid growth rate

- one-period bond in zero net supply
Model in Gabaix and Koijen

- key assumption: rep agent cannot choose asset holdings freely
 - all stocks and exogenous amount of bonds \bar{B}_t held through mixed fund
- optimization problem

$$\max_{C_t, B_t} E \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma}$$

$$C_t + B_t + \bar{B}_t = (B_{t-1} + \bar{B}_{t-1}) R_{t-1}^f + Y_t$$

- rep agent can choose bonds B_t freely
 - standard Euler equation

$$1 = E \left[\beta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} R^f \right]$$

 - iid equilibrium consumption growth: R^f is constant
Model in Gabaix and Kojien

- mixed fund holds exogenous amount of bonds \bar{B}_t and stocks Q_t
 - wealth in fund $W_t = \bar{B}_t + P_t Q_t$
 - maintains portfolio share θ on stocks, $\theta = \frac{P_t Q_t}{W_t} = 80\%$
 - stock demand by fund $Q_t = \frac{\theta W_t}{P_t}$

- market clearing $Q_t = 1$, so

 $$\text{stock price } P_t = \frac{\theta}{1 - \theta} \bar{B}_t = 4\bar{B}_t$$

stock price volatility is driven entirely by intermediated bonds \bar{B}_t

- what is the price-elasticity of stock demand?

 $$\frac{d \log Q}{d \log P} = -1 + \frac{d \log W}{d \log P} = - (1 - \theta) = -\frac{1}{5}$$
Comments

- model makes three important assumptions:
 - fund portfolio share θ is exogenous
 - paper has more elaborate, including time-varying, exogenous θ’s
 - all stocks are in the fund
 - amount of bonds \Bar{B}_t is exogenous

- θ, stocks in the fund and \Bar{B}_t are not chosen by the household
 - household chooses $B_t = -\Bar{B}_t$ in equilibrium

- next step: endogenize relative positions of mechanical investors
 - natural candidate: model with heterogeneous agents
Endogenizing flows

- Chien, Cole & Lustig 2011 (ReStud), 2012 (AER)
- heterogeneous agents
 - standard preferences
 - endowments hit by idiosyncratic shocks
 - aggregate endowment has iid growth rate
- everyone chooses consumption/savings optimally
- 3 types of agents differ in their savings technologies:
 1. mechanical: fixed portfolio share θ in stocks, $1 - \theta$ in bonds
 2. nonparticipant: only in bonds
 3. active: no constraints
- solving for equilibrium is difficult
Equilibrium properties of Chien, Cole & Lustig

- endogenous wealth of mechanical investors
 - depends on performance on their rule

- active investor absorbs mechanical trades
 - also borrows from others to clear bond market

- stock price determined by Euler equation of active investor
 - in bad aggregate state: position of active investor is more leveraged and risky, worth less
 - in good aggregate state: position is safer, worth more

 \Rightarrow stock price is highly volatile

- what would Gabaix-Koijen econometrics find in this environment?
 - do we need more than endowment shocks?
 - what is price-elasticity of aggregate stock demand?
Bottom line

- low price-elasticity of stock demand is nice diagnostic tool
- mechanical investing helps to get low elasticity
- rep agent model with mechanical investing
 - intermediated bond holdings \tilde{B}_t are exogenous, all stocks intermediated
 - determines stock price entirely by flows, not through Euler equation
- next step: heterogeneous agent models
 - some agents are mechanical investors (as in Chien, Cole and Lustig)
 - other agents are active and their Euler equations hold
 - use diagnostic tools to learn about shocks, elasticities
 - interesting heterogeneous welfare effects?