Discussion of "In Search of the Origins of Financial Fluctuations: The Inelastic Markets Hypothesis" by Xavier Gabaix & Ralph Koijen

Monika Piazzesi Stanford, CEPR & NBER

NBER Monetary Economics Spring Meeting 2022

Research agenda in macro-finance

- wanted: model s.t.
 - volatility in asset prices (stocks, houses, bonds, etc)
 - financial intermediaries
 - microfounded to allow for welfare analysis
- intermediated investments are often mechanical
 - funds have mandates (for example, constant portfolio shares)
- good amplification mechanism for small aggregate shocks?

Contribution

- key new statistic: price-elasticity of stock demand
- empirical strategy to estimate this statistic from Gabaix-Koijen (2020)
- fascinating empirical finding:
 - price-elasticity of aggregate stock demand is low: $-\frac{1}{5}$
 - flipside: more demand for stocks has big price impact, multiple of 5! another dollar spent on stocks pushes stock values up by 5 dollars
- model that explains inelastic demand for stocks and volatility

Discussion

- How does the model explain inelastic stock demand and volatility?
- Relate to existing work on mechanical investing
- Next steps

Lucas Tree Model

• rep agent with standard preferences

$$E\sum_{t=0}^{\infty}\beta^{t}\frac{C_{t}^{1-\gamma}}{1-\gamma}$$

- endowment stream Ω_t
- stock pays dividend stream D_t
- ullet total supply of goods $Y_t=\Omega_t+D_t$, with iid growth rate
- one-period bond in zero net supply

Model in Gabaix and Koijen

- key assumption: rep agent cannot choose asset holdings freely
 - $lacksymbol{ iny}$ all stocks and exogenous amount of bonds $ar{B}_t$ held through mixed fund
- optimization problem

$$\begin{aligned} \max_{C_t,B_t} E \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma} \\ C_t + B_t + \bar{B}_t &= \left(B_{t-1} + \bar{B}_{t-1}\right) R_{t-1}^f + Y_t \end{aligned}$$

- rep agent can choose bonds B_t freely
 - standard Euler equation

$$1 = E\left[\beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} R^f\right]$$

▶ iid equilibrium consumption growth: R^f is constant

Model in Gabaix and Koijen

- ullet mixed fund holds exogenous amount of bonds $ar{B}_t$ and stocks Q_t
 - wealth in fund $W_t = \bar{B}_t + P_t Q_t$
 - maintains portfolio share θ on stocks, $\theta = \frac{P_t Q_t}{W_t} = 80\%$
 - stock demand by fund $Q_t = \frac{\theta W_t}{P_t}$
- ullet market clearing $Q_t=1$, so

stock price
$$P_t = \frac{\theta}{1-\theta}\bar{B}_t = 4\bar{B}_t$$

stock price volatility is driven entirely by intermediated bonds \bar{B}_t

• what is the price-elasticity of stock demand?

$$\frac{d \log Q}{d \log P} = -1 + \frac{d \log W}{d \log P} = -(1 - \theta) = -\frac{1}{5}$$

Comments

- model makes three important assumptions:
 - fund portfolio share θ is exogenous
 - paper has more elaborate, including time-varying, exogenous θ 's
 - all stocks are in the fund
 - amount of bonds \bar{B}_t is exogenous
- ullet heta, stocks in the fund and $ar{B}_t$ are not chosen by the household
 - household chooses $B_t = -\bar{B}_t$ in equilibrium
- next step: endogenize relative positions of mechanical investors
 - natural candidate: model with heterogeneous agents

Endogenizing flows

- Chien, Cole & Lustig 2011 (ReStud), 2012 (AER)
- heterogeneous agents
 - standard preferences
 - endowments hit by idiosyncratic shocks
 - aggregate endowment has iid growth rate
- everyone chooses consumption/savings optimally
- 3 types of agents differ in their savings technologies:
 - 1. mechanical: fixed portfolio share θ in stocks, $1-\theta$ in bonds
 - 2. nonparticipant: only in bonds
 - 3. active: no constraints
- solving for equilibrium is difficult

Equilibrium properties of Chien, Cole & Lustig

- endogenous wealth of mechanical investors
 - depends on performance on their rule
- active investor absorbs mechanical trades
 - also borrows from others to clear bond market
- stock price determined by Euler equation of active investor
 - in bad aggregate state: position of active investor is more leveraged and risky, worth less
 - ▶ in good aggregate state: position is safer, worth more
 - => stock price is highly volatile
- what would Gabaix-Koijen econometrics find in this environment?
 - do we need more than endowment shocks?
 - what is price-elasticity of aggregate stock demand?

Bottom line

- low price-elasticity of stock demand is nice diagnostic tool
- mechanical investing helps to get low elasticity
- rep agent model with mechanical investing
 - ightharpoonup intermediated bond holdings \bar{B}_t are exogenous, all stocks intermediated
 - determines stock price entirely by flows, not through Euler equation
- next step: heterogeneous agent models
 - some agents are mechanical investors (as in Chien, Cole and Lustig)
 - other agents are active and their Euler equations hold
 - use diagnostic tools to learn about shocks, elasticities
 - interesting heterogeneous welfare effects?