Discussion of "Mortgage Prepayment and Path-Dependent Effects of Monetary Policy" by David Berger, Konstantin Milbradt, Fabrice Tourre & Joe Vavra

Monika Piazzesi Stanford, CEPR & NBER

AEA meetings 2019

Discussion

- refis are complicated
 - optimal exercise of American option, no closed form solutions except in stark cases, high transaction costs/behavioral problems, strong life cycle patterns, idiosyncratic shocks in income and house prices, various maturities, moving decisions and household formation,
- paper proposes a simple refi model
- paper documents empirical fact: prepayment rate is path-dependent
 - depends on gap between locked-in rate and current mortgage rate
 - well known in mortgage literature
 - for example, Table 2 in Schwartz and Torous 1989 based on prepayment rates in Ginnie Mae 30-year mortgage pool data 1978-1989
- model generates path-dependent refis

Model of refis

no housing/mortgages, transaction costs

$$\max_{C} E\left[\int_{0}^{\infty} e^{-\delta t} \frac{C_{t}^{1-\gamma}}{1-\gamma} dt\right]$$
s.t. $dW_{t} = \left[Y_{t} - C_{t} + r\left(a_{t}\right) W_{t} - m\left(a_{t}^{*}\right) F\right] dt$

$$W_{t} \geq 0$$

- fixed income Y, receive only B with some constant probability
- Markov chain for finite aggregate state a, save at rate r(a)
- infinite maturity "mortgage": fixed amount F, locked-in state a^* determines $m(a^*)$, payment $m(a^*)$ F < B
- how does a* change? attention and moving arrive with constant Poisson arrival rates
 - ▶ attention: if $m(a) < m(a^*)$, lock in $a^* = a$
 - ▶ moving: same F, only resets a^* in $m(a^*)$

$$da_t^* = \left(a_t - a_{t-}^* \ \left[\mathbf{1}_{[m(a_t) \ < \ m(a_t^*)]} \ dN_t^{(au_a)} + dN_t^{(au_m)}
ight]
ight)$$

Model of refis

- consumption smoothing is key motive
- refi model is isomorphic to special income shocks:
 - recession: if rate m(a) drops below $m(a^*)$, get positive income shock $F(m(a^*) m(a))$ partially hedges more adverse income shocks in recessions
 - ▶ if rate m(a) increases, no shock unless move
- can this model capture refi behavior?

Move at constant rate

- ullet Poisson process $N^{(au_m)}$ for moving with constant arrival rate
- American Housing Survey asks movers about their reasons for moving
- Many movers have reasons that are unrelated to economics (natural disaster, fire, death of a spouse, marriage, divorce, kids ...)
 Landvoigt, Piazzesi and Schneider 2015 AER
- Krivenko 2018 constant moving probability is important for bust move also when unemployed in recession, pushes down house prices

Attention arrives at constant rate

- ullet Poisson process $N^{(au_a)}$ for attention with constant arrival rate
- low prepayment rates in the data, even with large gap between locked-in and current mortgage rate
- optimal American option exercise predicts frequent refis
- literature on mortgage-backed securities backs out high costs to refi e.g. Stanton 1995
- Schwartz & Torous 1989 find that prepayment rates increase in squared gap
 - refis more likely if rates fall drastically
 - maybe Poisson arrival probability should depend on a?

Overall impact of rate changes?

- model is about rate-refis
- are positive income shocks $F\left(m\left(a^*\right)-m\left(a\right)\right)$ quantitatively important?
 - impact on average m (a*) equals probability to get a new mortgage (refi or move): small
- how much do cash-refis contribute to overall consumption effect? higher MPCs?
- does the paper provide a lower bound?
- life cycle effects: young have twice as large consumption response (Wong 2017)