Discussion of "Mortgage Prepayment and Path-Dependent Effects of Monetary Policy"
by David Berger, Konstantin Milbradt, Fabrice Tourre & Joe Vavra

Monika Piazzesi
Stanford, CEPR & NBER

AEA meetings 2019
Discussion

- refis are complicated
 - optimal exercise of American option, no closed form solutions except in stark cases, high transaction costs/behavioral problems, strong life cycle patterns, idiosyncratic shocks in income and house prices, various maturities, moving decisions and household formation,

- paper proposes a simple refi model

- paper documents empirical fact: prepayment rate is path-dependent
 - depends on gap between locked-in rate and current mortgage rate
 - well known in mortgage literature
 - for example, Table 2 in Schwartz and Torous 1989 based on prepayment rates in Ginnie Mae 30-year mortgage pool data 1978-1989

- model generates path-dependent refis
Model of refis

- no housing/mortgages, transaction costs

\[
\max_C \mathbb{E} \left[\int_0^\infty e^{-\delta t} \frac{C_t^{1-\gamma}}{1-\gamma} \, dt \right]
\]

s.t. \(dW_t = [Y_t - C_t + r(a_t) W_t - m(a^*_t) F] \, dt \)

\(W_t \geq 0 \)

- fixed income \(Y \), receive only \(B \) with some constant probability
- Markov chain for finite aggregate state \(a \), save at rate \(r(a) \)
- infinite maturity "mortgage": fixed amount \(F \), locked-in state \(a^* \) determines \(m(a^*) \), payment \(m(a^*) F < B \)
- how does \(a^* \) change? attention and moving arrive with constant Poisson arrival rates
 - attention: if \(m(a) < m(a^*) \), lock in \(a^* = a \)
 - moving: same \(F \), only resets \(a^* \) in \(m(a^*) \)

\[
da^*_t = \left(a_t - a^*_t - \left[1[m(a_t) < m(a^*_t)] \, dN_t^{(\tau_a)} + dN_t^{(\tau_m)} \right] \right)
\]
Model of refis

- consumption smoothing is key motive

- refi model is isomorph to special income shocks:
 - recession:
 - if rate $m(a)$ drops below $m(a^*)$, get positive income shock $F(m(a^*) - m(a))$ partially hedges more adverse income shocks in recessions
 - if rate $m(a)$ increases, no shock unless move

- can this model capture refi behavior?
Move at constant rate

- Poisson process $N^{(\tau_m)}$ for moving with constant arrival rate
- American Housing Survey asks movers about their reasons for moving
- Many movers have reasons that are unrelated to economics (natural disaster, fire, death of a spouse, marriage, divorce, kids ...)
- Landvoigt, Piazzesi and Schneider 2015 AER
- Krivenko 2018 constant moving probability is important for bust move also when unemployed in recession, pushes down house prices
Attention arrives at constant rate

- Poisson process $N^{(\tau_a)}$ for attention with constant arrival rate
- low prepayment rates in the data, even with large gap between locked-in and current mortgage rate
- optimal American option exercise predicts frequent refis
- literature on mortgage-backed securities backs out high costs to refi e.g. Stanton 1995
- Schwartz & Torous 1989 find that prepayment rates increase in squared gap
 - refis more likely if rates fall drastically
 - maybe Poisson arrival probability should depend on a?
Overall impact of rate changes?

- model is about rate-refis

- are positive income shocks $F(m(a^*) - m(a))$ quantitatively important?
 - impact on average $m(a^*)$ equals probability to get a new mortgage (refi or move): small

- how much do cash-refis contribute to overall consumption effect? higher MPCs?

- does the paper provide a lower bound?

- life cycle effects: young have twice as large consumption response (Wong 2017)