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ABSTRACT

When a vision system creates an interpretation of some input data, it

assigns truth values or probabilities to internal hypotheses about the

world. \Ve present a non-deterministic method for assigning truth

values that avoids many of the problems encountered by existing

relaxation methods. Instead of representing probabilities with real-

numbers. we use a more direct encoding in which the probability
\

associated with a hypothesis is represented by the probability that it is
in one of two states. true or false. We give a particular non-
deterministic operator. based on statistlcal mechanics. for updating the

truth values of hypotheses. The operator ensures that the probability

of discovering a particular combination of hypotheses is a simple
function of how good that combination is. We show that there is a
simple relationship between this operato.r and Bayesian inference. and
we describe a learning rule which allows a parallel system to converge

on a set"of weights that optimizes its perceptual inferences.

Int roduction

One way of interpreting images is to formulate hypotheses about pans
or aspects of the image and then decide which of these hypotheses arc

likely to be correct. The probability that each hypothesis is correct is
determined partly by its fit to the image and partly by its fit to other

hypotheses that are taken to be correct, so the truth· value of an

individual hypothesis cannot be decided in isolation. One method of

searching for the most plausible combination of hypotheses is to use a

relaxation process in which a probability is associated with each

hypothesis. and the probabilities arc then iteratively modified on the
basis of the fit to the image and the known relationships between
hypotheses. An attractive property of relaxation methods is that they

can be implemented in parallel hardware where one computational

unit is used for each possible hypothesis, and the interactions between

hypotheses arc implemented by direct hardware connections between

the units.

Many variations of the basic relaxation idea have been sur.,gested.H

However. all the current methods suffer from one or more of the

"

-Terrence J. Sejnowski

Biophysics Deportment
The Johns Hopkins University

following problems:

1. They converge slowly.

2. It is hard to analyse what computation is being performed by the
relaxation process. For example. in some versions of relaxation
there is no explicit global measure which is being optimized.

3. They arc unable to integrate. in a principled way. two kinds of
decision, Some systems use relaxation to make discrete
decisions (e.g. which kind of 3-~ edge a line depicts) and the
numbers that arc modified duri-ng relaxation then represent
probcbilitics.i Other systems choose the most likely values of
continuous physical parameters (c.g, the local surface
orientation) and the numbers that arc modified then represent
current estimates of these parameters.6•7 No system integrates
both kinds of decision and still guarantees convergence to the
optimal interpretation.

4. Systems designed to make discrete decisions do not always
converge to a state in which all probabilities for discrete
hypotheses arc 1 or D. so a subsequent stage is needed to choose
a specific perceptual interpretation.

5. There is no obvious way for most systems to learn the
appropriate values for the weighting coefficients that determine
how the probabilities of related hypotheses affect each other.

\

In this paper we present a parallel search technique which overcomes
these difficulties by using a different representation for probabilities.
All the current methods use real numbers to represent the

probabilities associated with hypotheses. Our method uses a more

direct encoding in which probabilities arc represented by probabilities.

If a hypothesis has a probability of two thirds of being correct, the unit

representing it will have a probability of two thirds of being found in
the "true" Slate and a probability of one third of being in the "raise"
state. We first show that this direct encoding allows the probability of
onc hypothesis to determine the probabilities of other related

hypotheses even though none of the hypothesis units ever has enough

information to allow it, for example. to print out its associated
probability. We then describe a search method. using this encoding ..

that finds plausible combinations of hypotheses. Next we show that,

using -our search technique. there is a Bayesian interpretation of the

. weights Illat determine the effects of one hypothesis on another. and



th~t the interpretation does not require the usual assumption of
independence of multiple sources of evidence.

Finally we give a learning rule that allows an optimal (or near optimal)
set of weights to be learnt from experience. 111is learning rule can be

used even in cases where the representations that the system should
use have not been decided in advance. The rule generates new
internal representations that make explicit the higher-order statistical
regularities in the environment,

fuillrescnling probirbilitics

There arc two very different senses of the phrase "cornmunlcatc a
probability", In the strong sense. a unit has communicated a
probability to another unit if the second unit has received enough
information to allow it to print out the probability. III this strong sense,
it takes 3. long time to communicate a probability using discrete
stochastic states. To decide whether a unit is adopting the true state
100 times per second or only 90 times per second. it is necessary to
observe its state for a large fraction of a second. In a tenth of a second
there is only a difference of I in the expected number of times the unit
is in the true Slate in the two cases. So in this strong sense, a unit that
adopts truth values with a particular probability can only
communicate the probability very slowly (or very inaccurately). Even
if there is little physicnl transmission delay, there is still a long
"decoding" delay before another unit has received enough
information to be able to make an accurate estimate of the probability.

The decoding delay cun be reduced by using a large pool of equivalent
units, and by monitoring the outputs of all of them. If each unit is
considered to be a Poisson process. a pool of units is a Poisson process
whose rate is just the sum of the individual rates, so the decoding delay
is inversely proportional to the number of units in the pool. However,
the use of population averages is clearly expensive in terms of the
number of units and connections required. and is therefore only WOM

doing if there is no more economical alternative. .

Fortunately. for the kind of search we arc proposing it is not necessary
to communicate probabilities in the strong sense of the term. What we
require is that the probability associated with unit n depends, in a
particular way, on the probability associated with unit A. If these
probabilitcs arc related by some arbitrary function. it is generally
necessary for unit A to communicate its probability to unit n in the
strong sense of the term. nut there is a special e1ass of functions
relating the probabilities of A and n that can be implemented without
the units ever having to "know" (i.c, having enough information to
print out) these probabilities. The simplest member of this class is the
identity function. If B simply adopts the same state as A, its
probability will be exactly the same as A's, and there will be no
decoding delay. Whenever the probability associated with A changes,
the probability associated with B will change after a time equal to the
transmission delay alone. Another function that can be implemented
this way is a probabilistic disjunction. To make the probability that

"

unit C is in the true state be equal to the probability that either A or B
is in the true slate, it is sufficient to make C true if either A or B is true.

Even though the states themselves arc regarded as probabilistic, the

identity and disjunction functions involve a deterministic relationship
between the state of one unit and the state of another. A non-

deterministic relationship can be used, for example, to make the
probability associated with 13be half the probability associated with
A. TIle rule is simply that n adopts the true stare with a probability of
one half if A is in the true Slate. This is a "doubly' stochastic" process
in which one probability is <I probabilistic function of another. We use.
such processes in our model of perceptual in ference.

.:..

SeIJrching for minimum enemy states of a
network

Given a perceptual input derived from 'some particular world, each
possible combination of hypotheses has a particular probability of
being the correct interpretation of the input We show later that the
probability can be related to a potential energy function, so that the
most plausible combination of hypotheses is the one with lowest
potential energy. First we give an expression lor the "potential
energy" of a state of a network and show how the processors have to
behave in order to minimize the energy.

Hopfic1d8 describes a system with a large number of binary units, The
units arc synvnetrically connected, wit'! t::.: strength or the connection

being the same in both directions. Ilopficld has shown that there is an
expression for the "energy" of a global state of the network, and with
the right assumptions, the individual units .act so as to minimize the
global energy, We use a variation of Hopficld's system in which a
particular task is defined by sustained inputs from outside the system,
and the interactions between units implement constraints between
hypotheses. '1l1Cenergy of a state can then be interpreted as me extent

.to which a combinatiun of hypotheses fails to fit me input data and
\

violates the constraints between hypotheses, so in minimizing energy
,the system is maximizing the extent to which a perceptual
interpretation fits the data and satisfies the constraints.

The global potential energy of the. system is defined as

E=-1I2~wi}slsr ~(1J/-OJSI
if I

where '11 Is the external input to the ;th unit. wi) is the strength of
connection (synaptic weight) from the jh to the ;th unit. $/ is a boolean
truth value (0 or I), and 0 i is a threshold.

(I)

A simple algorithm for finding a combination of truth values that is a
local minimum is to switch each hypothesis into whichever of its two
states yields the lower total energy given the current states of the other
hypotheses. If hardware units make their decisions asynchronously,
and if transmission times are negligible, then the system always settles

. into a local energy minimum. Because the connections are
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symmetrical, the difference between the energy of the whole system
with the kfh hypothesis false and its energy with the kth hypothesis true

can be determined locally8 by the kth unit. and is just

, tJ.Ek= L wAisi + T/k-Ok
i

Therefore, the rule for minimizing the energy contributed by a unit is
10 adopt the true stale if its total input from the other units and from
outside the system exceeds its threshold, This is the familiar rule for
binary threshold units,

Using probabilistic decisions to escape
from local minima

The deterministic algorithm suffers from the standard 'weakness of
gradient descent methods: It gets stuck at local minima that are not
globally optimal. This is an inevitable consequence of only allowing
jumps to states of lower energy. If. however, jumps to higher energy
stales occasionally occur, it is possible to break out of local minima.
An algorithm with this properly was introduced by Metropolis fl. 01.9

to study average properties of thermodynamic systemslO and has
\ .

recently been applied to problems of constraint satisfactionll. We
adopt a form of the Metropolis algorithm that is suitable for parallel.

computation: If the energy g?P between the true and false states of the
klh unit is tJ. Ek then regardless of the previous state set sk = 1 with
probability

where T is a parameter which actslike temperature (see fig. 1).

1.00
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Figure 1

Probability p(tJ.E) that a unit is in its "true" state as a function of
its energy gap t.E plotted for T= 1 (Eq. 3). As the temperature
is lowered to zero the sigmoid approaches a step function.

This parallel algorithm ensures that in thermal equilibrium the relative
probability of two global states. is determined solely by. their energy
difference, and follows a 130111manndistribution.

L«: = e-(Ea-Ep)/T

Pp
(4) .

where P is the probability of being in the ath global state, and E isa a
the energy of that state.

(2)

At low temperatures there is a strong bias in favor of states with low
energy, but the time required to reach equilibrium may be long. At
higher temperatures the bias is not so favorable but equilibrium is
reached faster.

Bayesian inference

Bayesian inference suggests a general paradigm for perceptual
interpretation problems. Suppose the probability associated with one
unit represents the probability that a particular hypothesis, h, is
correct. Suppose, also, that the "true" sL.'\teof another unit is used to
represent the existence of some evidence; e. Bayes theorem prescribes
a way of updating the probability of the hypothesis [i..h) given the
existence of new evidence e:

'p(hle)= p(h)p(el h)
p(h)p(el h) + p(li)p(elli)

:: 11(1+ "p(li) p(elli) )
p(h) p(elh)

p(h) p(tih)
=1/(1+t-(/. p(Ji) +1. A<I~.»

where 7i is the negation of h.

(3) The Hayes rule has the same furm as the decision rule ill FA!(3) if we
identify the probability of the unit with the probability of the
hypothesis. The threshold implements thce priori likelihood ratio, the
external input Implements the effect of the direct evidence in the
image, and the synaptic weights implement the effcct of the evidence
provided by the states of other hypotheses (assuming th.e temperature
is fixed at 1):

w =In~
hi p(ejli) I p(imagedalalh)

T/h= " p(imagedalajli)

Bayesian in ferenc.e ',Vith one piece of evidence can .lh.e~efore be
implemented by units of the type we have been considering. There
are, howev·cr, several difficulties with this simple formulation.

.1. It provides no way for the negation of the evidence e to affect
the probability of h. .

2. It docs not lead to symmetrical weights when two units affect
each other since p(ejh)/p(eIJi) is generally not equal to
p(hlc)/ p(hle).

3. Although· it can easily be gencrallscd to cases where there are
many independent pieces of evidence, it is much harder to
generalist to cases where thc pieces of evidence not independent
of each other. :;,

A diagrammatic rcpresentali~n of the way to solve the first difficulty is
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shown below. The diagram uses a convention in which threshold terms

are implemented by weights of thc opposite sign on a connection from
a permanently true unit, This TRUE uait is justa hypothetical device'

for allowing threshold terms to be treated in the same way as pairwise

interactions. It simplifies the mathematics because it allows all terms in
the energy expression to bc treated as pairwise interactions. (me
sustained external inputs that specify the particular data to be
interpreted can also be turned into pairwise tcnns by treating them as
weights on lines from units that arc fixed in the true state for that
particular case), The effect of c can be implemented by purring it into
the threshold tcrm for h. and by subtracting an equal amount from the
weighting coefficient from c, so that when c is in the true state the
effect of the threshold tenn on h is cancelled out.

WJ..e

e

where w -= In p(elh)
hi p(eVi)

Thus the combined weight from e is:

= In p( elh) _ In p(elh)
p{elli) p(elli)

-In p(l'.h)[I- p(l")- p(h)+ p(e.h)]
- [p(e) - p(e.h)lIp(h) p(e.h)]

Equation 6 is symmetrical in e and h, so in solving the problem of how
to make the negation of e have the correct effect on h we have also
solved the second problem -- the required weights are now
symmetrical. The more complicated weight in Eq. 6 docs not alter the
fact that the probability of a hypothesis has the form of the Boltzmann
distribution for a unit with two energy states.

Systems which use Bayesian inference often make the assumption that
12)) Th . .. t: thopieces of evidence are independent. ., c main motivauon ,lor IS

assumption is that too much memory would be required to store all
the dependencies, even if thcy were known. The independence
assumption is hard tojustify and it is typically a poor approximation in
systems with many mutually interdependent hypotheses. A much
better approximation, given some fixed set of variable wcights, can be
achieved by using whatever weights give tJ1C best overall
approximation to the correct, probabilities for the various possible
combinations of hypotheses. At first sight, it is very hard to derive
these weights, since the correct value for each weight depends on all
the others. However, we now show that there are ways to hill-climb
towards the optimum combination of weights.

".

Learning

When a system is allowed to reach thermal equilibrium using the
probabilistic decision rule in Eq 3, the probability of finding it in any
particular global state depends on the energy of that state (Eq 4), and
so the probability can be changed by modifying the weights ,so as to
change the energy of the state, In14 wc describe a learning rule which
assumes that in addition tothe input data. the system is given the
desired probability ratios for pairs of global states, The rule is

guaranteed to converge on a set of weights that causes the system to
behave in accordance with the desired probabilities (if any such set of
weights exists). We now describe a more general learning rule that
does not require any separate source of in formation about the desired
probabilities of global states. The rule leads to continual
improvements in the network's model of its environment.

Supposethat the environment, directly and completely determines the
states of a subset of the units (called the "visible" units), but leaves the
network to determine the states'of the remaining, "hidden" units.vThe
aim of tile learning is to use uie hidden units to create a model of the

, structure implicit in the ensemble of binary state vectors that the
environment determines on the visible units.

(6)

We assume that each of the environmentally determined state vectors
persists for long enough to allow the rest of the network to' 'reach
thermal equilibrium, and we ignore any structure that may exist in the

sequence of environmentally determined vectors. The structure of the
environment can thcn be specified by giving the probability
distribution over all2v states of the v visib]e units. The network will be
said .to have a perfect model of the environment if it achieves exactly
the same probability distribution over these 2Y states when it is
running freely at thermal equilibrium wit]: no environmental input.

In general, it will be impossible 10 achieve a perfect model because the
1I2(v +h)2 ~\:ights among the v visible and h hidden units are
insufficient to model the 2Y probabilities or the environmentally
determined states of the visible units. However, if there are regularities
in the environment, and if the network uses its hidden units to capture
these regularities .. it may achieve a good match to the environmental

. '. ,
probabilities.

An information theoretic measure of the discrepancy between the
network's internal model and the environment is

(7)

where I'( Va) is the probability of the ath state of the visible units when
their states are determined by the environment, and P'( Va) is the
corresponding probability when the network is running freely with no
e~vironment.ll input. The term ?'( Va) depends on the weights, and so
G can be altered by changing the weights. To perform gradient
descent in G, it is necessary to knowthe partial derivative of G with
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respect to each individual weight, In most cross-coupled non-linear
networks it is very hard to derive tfiis quantity, but because of the

simple relationships that hold at thermal equilibrium, the partial

derivative of G is fairly simple to derive for our networks. The
probabilities of global states arc determined by their energies (Eq. 4)
and ~e energies arc determined by the weights (Eq. 1). Using these

equations it can 'be shown that

where si is the state of the /h unit in the 71
th global slate, f'" is the

probability of the 71
th global state (defined over both the visible and

hidden units) when the network is being driven by the environment so
th"t the states of the visible units do not depend on the weights, and
P' 'If is the probability of the 71

th global state when the network is
running freely.

To minimize G, it is therefore sufficient to increment each weight by
an amount proportional to the difference between two frequencies.
The first is the frequency with which the two units that UIC weight
connects arc both on when the network is being driven by the
environment, and UICsecond is the corresponding frequency when UIC
network is running freely without environmental input. Both
frequencies must be measured when the network is at thermal

equilibrium. A surprising feature of this rule is that it uses only locally

available infonnation. The change in a weight depends only on the
behaviour of the two units it connects, even though the change
optimizes a global measure, and the best value, for each weight
depends on the values of all the other weights.

Once G has been minimized the network will be able to generate
plausible completions when the environment only determines UIC
states of some of the visible units. The network will have captured the
best regularities in the environment and these regularities will be
enforced when performing completion. One way to use this
completion ability would be to divide the visible units into two subsets
called "input" and "output". During "training" the environment
would consist of pairs of inputs and desired outputs. In minimizing G,
the network would then be finding weights that allowed it to predict
the output when given the input alone,

If there are 110 hidden units. UIC weight space is concave in G so
gradient descent will find the global minimum. When there arc hidden
units, the same learning rule still performs gradient descent in 0, but
there arc non-global minima in the weight space. and UIC sytcrn can
get stuck at one of these sub-optimal values of G. This occurs when
the system is doing the best that it can given the representations it has
learnt in the hidden units. To do better it has to change these
representations which involves a temporary increase in G. Of course, if
the modifications to the weights arc probabilistic so that G. can,

"

e,

sometimes increase, it is possible to escape from local minima and
ensure thal after enough learning there is a bias in tavor oCglobalfy
optimal or near optimal sets of weights.

Potenlitll energy and percentutll inference

In designing a parallel system for perceptual inference, the energy was
important for two reasons. It represented the degree of violation of the

constraints between hypotheses, and it also determined the dynamics

of the search. From a few simple postulates about the energy it is
possible to derive the main properties of the probabilistic system.

Postulate 1: There is u "potential energy" function over states of tht

whole system which is a function. f(f' Q)' of the probability of a state.
This is equivalent to saying that. given any input. a particular
combination of hypotheses has exactly one probability. It docs not. for
example, have a probability of 0.3 and also a probability of 0.5.

Postulate 2: The potential energy is additive fur independent systems.

Since the probability for a combination of Slates of independent
systems is multiplicative, it follows that f(f' a) +f(l'p) =f(l'a {'pl. The
only function that satisfies this equation is J{ ['Q) = kin (f'n)' To make
more probable SLates have lower energy k must be negative.

Postulate 3: The part of ti,e potential energy contributed by a single unit

can be computed from information available to the unit. Only potential
energies symmetrical in all pairs of units have this property: since in

this case a unit can "deduce" its effect on other units from their effect
on iL

Discussion

We have given a brief and condensed description of a new relaxation
method that overcomes many of the drawbacks of current methods,
There is 'not space for a detailed discussion of the many. interesting
questions ~aised by UIC new method, and so we shall just mention a
few of the more important issues here.

We have ignored the difficult question of how long it takes the system
to reach equilibrium, The efficiency of the whole method depends on
equilibrium' bClng reached fairly rapidly. so this' i~ a crucial issue.
Several methods of speeding the approach to .cquilibriurn are
described briefly in 14 but more research is needed. A group at Brown
University (Geman, private communication)' have independently
discovered UIC value of this kind of non-deterministic search as a
model of parallel computation, and they arc deriving bounds on the
rate of approach to equilibrium.

It may seem disadvantageous to have a system which docs not always
tind the most probable interpretation of the perceptual input. but
instead produces interpretations with a probability that. equals their
probability of being correct, However, a system that integrates many
different kinds of constraints wil] almost always pick the correct
interpretation of a natural scene because with enough information the
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correct interpretation is overwhelmingly more likely than any other.IS

Also. by lowering the tcmpcrcturc and running the system for longer it
is possible 10 exaggerate UIC probability with which the most plausible

intcrprcution will be selected.

The natural way to represent continous parameters for our relaxation
method is to divide their ranges into a number of overlapping intervals
and to scr aside a unit for each intcrval16• The truth-value of a unit
then indicates whether the continous parameter lies within its interval.
Ily using large overlapping intervals. this rcprcscutation can be made
both accurate and efficient (or encoding 'multidimensional variables.l1

,\n advantage of using VIis "mosaic" encoding is that it allows
decisions about discrete and continuous variables to be Integrated into
a single search in a principled way.

We have ignored the fact that at finite temperature the system will
inevitably settle into a "degenerate" minimum in which it fluctuates
among a collection of similar states, This is actually an advantage since
the proportion of the time a unit is true within the degenerate
minimum allows it to convey more information about UIC solution
than a single truth value.

We have assumed that the connections arc all symmetrical in order to
simplify the analysis. This assumption, however, can be relaxed.
G ivcn the symmetry of the potential energy function. it is not

necessary to have two' way connections in the parallel hardware. If a
symmetrical network is degraded by removing one of the directions
for each pairwise link, its behavior will still approximate the behavior
of the original network provided each unit has a large number of
inputs. and the choice of which direction to remove for each link is
random relative to the potential energy function. If these conditions
hold. a unit can get a good, unbiased estimate of what its total input
would have been if all the connections had been symmetrical.

/\ very common misconception about our relaxation method is that it
is just a noisy version of continuous relaxation methods which
associate a real-number with each unit. According to thls view, it is the
time average of the truth values mat is important in the computation.
and thls time average can be represented by an approximate real-
number. This view is wrong for several reasons. First, the'
computation is performed by the non-equilibrium process of reaching
equilibrium, and during this process there arc major differences
between the ensemble average (taken over a collection of identical
non·Jetenninistic machines) and the time average (taken over time for
a single machine). For example, probabilities can be accurately
defined over very short time periods using ensemble averages and they
can also change very rapidly. Second, the behaviour of a IJTge.
ensemble of identical machines containing binary units cannot be
modelled adequately by a single machine that contains real-valued

units whose values represent me fraction of the corresponding units

thJt arc on in the ensemble. The single real-valued machine looses

information about the higher-order statistics of the ensemble. In a case

like the Necker cube, for example, there may be two alternative

collections of hypotheses that form equally plausible interpretations,
and a probabilistic binary machine may occasionally nip between

these collections. A real-valued machine would assign a value of 0.5 to
each hypothesis in either collection, and would thus fail to represent
which hypothesis goes with which.
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