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Basic symmetric polynomials

o The power sums pr(x) = pr(x1,...,Xn)

pr(x):x1+...+x;

o The elementary and homogeneous symmetric polynomials are generated by
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= th(x)zk = H(l —xiz) ' = eXpZ —pr(x

k>0 i=1
more explicitly
ex(x) = E Xiy « - Xiy, hie(x)
1<) <+ <ig<n

e For a partition A = (A, ..., Av) we have

:Hp)‘f(x)’ eA(x):HeAj(x)a

e The monomial symmetric polynomials
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Symmetric polynomials with two parameters

Symmetric polynomials p (x), ex(x), hx(x) and mx (x) form bases in the ring

=Z[xi,... ,x,,]s". We use the degree of polynomials to decompose A"
An _ @ An,d
d>0

Consider the ring Aj = A" ® F with F = Q(q, 1).

With modified generating functions we build elements in Ag, e.g.:

ngxq, z—expzll_t x)z

n>0 r>0

and one can write products gx (x; ¢, 1) = Hj[,V:I gx(x59,1).

Alternatively one modifies m (x)

Pa(x;q,1) ZVAM g, 1) (x)

for some vy . (g,¢) € F. An important choice is when vy, (g, ) = 0 for partitions
> A with the dominance ordering

k k
@ > when Zu,-zz}\,-, k>0



Scalar product and Macdonald polynomials

e Define the scalar product on A

max ()

(Palpu) = Oxucr,  ca = HA H mi(\

were m;() is the multiplicity of i in \.

e Define the scalar product (Macdonald scalar product) on Ay

1 —
(PAlPu)g, = Ox.uen H q

For this scalar product there exists a basis Py (x; ¢, ) s.t.":

(PAIPu)g, =0, A#p,

and Px(x;q,1t) = mx(x Z"Au g, t)my(x)
p<A
Example

(1-02+q+1+2q)
1 — g2

Py (x;q,1) = me ) (x) + m (%)

1 . . .
Macdonald, Symmetric functions and Hall polynomials



Difference operators

Introduce shift operators T, »,

Toi S (X5 Xy ooy Xn) = F (X0, o, gXiy e ooy Xn)

Consider the operator Dy (Macdonald operator)

— f=1)/2 Ixi — T
2111;[ o Hl i
#I=

Dy’s are diagonal in the basis Px (x; g, 1)
. _ Ay n—1 o .
DkP)\<x7q7t)_ek(q 4 yeenq )PA(X,q,l)

Consider another operator H, (Noumi operator)

n
__ q"xi — q"x tx,/x,,
Hk - P — X (qx /x Lly‘f:
vCN" 1<i<j<n i,j=1 i/%: 4 i=1

[vT=k

Hi’s are diagonal in the basis Py (x; g, t)

)‘1”

HPA(x;9,0) = ge(q™' "™ ™5 q,1)PA(x; g, 1)



Symmetric functions and Macdonald operators

From now on we consider an infinite alphabet

pr(x) =x] +x5+...

All functions are modified accordingly. The operators are modified as well

r (_ 1 )r+kt7nr

Er = Z WDk

k=0
r+l\'t—nr

~ g
G, = —_—
2 (g q )

k=0

H;

The operators E; and Gy act on P (x; q,1) € AF° as follows
Mg )PA(x g, 1)

EiPx(x;q,1) = ex(q
LT g, )PA(x; g, 1)

GiPA(x;q,1) = ge(q™ 1 g™,
Let £(M\) = #X\;, s.t. \; > 0. For evaluating the symmetric functions one may use
L) A

N = ) DS

pr(q ]t ) I
i=1 j=l1




Heisenberg algebra and Fock space

We will rephrase the symmetric functions and operators using the Heisenberg
algebra:

|m|

l—g¢g

H= {am a—n}n>07 [anu an] = 6m,—n mm

Note [an, an] = 0, m,n < 0 or m,n > 0, then define
ax = Ax; - Axyy,-
This algebra acts on the vector space F with the lowest vector | &)
an|@) =0, a—, |&) = higher states, n>0

The Fock space is spanned by |ax) = a—x |@) and the action of H is:

m(pe) 1—q
a—y lay) = lapuw), ay lay) = cv |:m(1/):| rEHV 11— |au/l/>

Analogously one defines the dual Fock space F* spanned by (a. |, then

)
(@xlan) = dxuex H T z*



Symmetric functions and Fock vectors

Comparing F and Ar with the basis px (x) we conclude
t:F = A, L lax) = |pa)

Through this isomorphism we get an H module on Ap

1-q 0
1 —1t Op,

a—rf(x) =p-(f(x),  aflx)=r (x),  f(x) € Ar

The Macdonald operators in the language of H are produced using the operator’

1—-7 _, . 1-7  _,
n(z) := exp (—Z r t a,z)exp <—Z ar )

r r

This is a generator of operators

n@)=>m",  eg  m= Y. act N ] (1) aa,

nez Ap rexup
[Al=pl

Note: for fixed o, 8 only finitely many terms {(a.| a—xa, |ag) are non-zero.

2Shiraishi 06



Vertex operator 1)(z)

Define the normal ordering Ta_\ay =iauga-y = a-xay
The normal ordering rule for products of 7(z) is

n(@n(w) = 8 :Zéj)zgl(l_—q;;x;g :n(z)n(w) :

Comparison of n(z)n(w) with n(w)n(z) gives

1

n(@n(w) = %)'n(W)n(Z), gw,2) == (w—12)(w—q 'D)(w—qt"'2)

Realization of the first Macdonald operator:
The mode 7y is diagonal in the basis Px (x; g, f)

70 (t— 1)E1
and  moPa(x;q,0) = (t—1)ei(qg"t ", ¢, .. )PA(x;q,1)

Proof: by direct comparison of the action of 1 and Ej in the basis py (x).>

3Shiraishi 06



Higher Macdonald operators via n(z)

The operator 7o can be represented as

dz
n=¢ —n()
Z
Introduce a rational function €,(z) = €n(z1,. .. ,2n)
(m—1z)(z—1""'g)
€nlZ) = -
@ g (zi — 7j)?

With this define the operators

~ 1 “rdzioeedze 10 _
En — (t—l)”n! %IE[I 71 ) ~77(Zl)~~~77(1n) .

&z

The action of E, in the Macdonald basis is determined by
En - En
E.Px(x;q,1) = en(g't™ ", g2, )PA(x; g, 1)

Proof: Use the connection between 7y and E; and prove the statement recursively.*

4Shiraishi *06; Feigin, Hashizume, Hoshino, Shiraishi and Yanagida *09



The shuffle algebra > A,

‘We need three parameters g1, g2, g3 With g1g2q3 = 1 and
a=q"' @=t
e The elements of A" = Al (qi, g2, ¢3) are of the form

F(ZI,...,Z”)— f(zly-..,Zn)

+ +11S,
"Maoaa-gp @ o@€CE o]
1<i<j<n\%i j

o The elements of A, satisfy the wheel condition
[, m) =0 it (z3,2%) = (2,12, 1922)  and (21,2, 2) = (2,922, 1922)
e Examples: AT =T,

z{eAf, JEZ

. _ 1
& q(’f)(mz )qu 2) c A,  for i=1,2,3.
1 — <2

5Feigin and Odesskii *97; Feigin and Tsymbaliuk *11; Schiffmann and Vasserot *13; Negut " 12



The shuffle product

Set
ol y) e Fm @)= @) —qy) _ glxy)
) = )

For F € A and G € A wehave Fx G € A},

(F+G)(z1,- .- 2k+1) = SymF(z1, ..., 2)G(Zkt1, - - - Zk41) H w(zj,zi)

ie{l,....k}
JE{k+1,. . k+1}

where |
Symf(zlv--wZn) = J Zf(za(l)7-“7za(t1))7
ocES,
Example:
iJ
i i 213 (22 — 412 2 — (422 2 — (432
ZI*Z]I: 123 (22 — q1z1) (22 — 1) (22 — q321)

(z2—z1)3

+ ZziZ'{ (Zl - 611Z2) (Zl - @Zz) (Zl - 6]312)
(z1—2)3



The shuffle algebras At and the subalgebra A

e The full shuffle algebra: A™ = @, ., A

AT is generated by 7, € A forj € Z°, and

O0(u/z1) *6(v/z1) = M(S(v/zl) x0(u/z1), where d(w/z1) : Zzl B

8(u,v) =

o Consider a subalgebra A, C A;" of degree 0 elements F which satisfy

<lim — lim ) F(ziy .y Zn—ky EZn—k+1,EZn—k+2 - - -, €20) =0

£—0 £—o00

For n = 0, 1 we have Ay = F, A; = Fz%. For n > 1 distinguished elements are

alma) = [ Go0DE oG5 g

1<i<j<n (@ —z)

In the following we focus only on the subalgebra A.

6Schiffmann and Vasserot *13; Negut "12



Properties’ of A

The dimension of .4, equals to the number of partitions of n

Proof: for a partition A we need to show that the following elements form bases
ex(zgr) = ex, (z3qx) -~ €xyy, (25 90, k=1,2,3
The algebra A is commutative
Proof: using various specializations of z; show that

6)1(Z7q1) * 5771(17 th) = 5m(Z7ql) * 6»;(Z7QI)

Recall the vertex operator 7(z) and define the operators

O(f):%dzl.ndbz f(zl,...,Zn) ) :77(11)---77(1") :, fEAn

2z en(z3q1)€n(z;5 g3

The operators O(f) for f € A form a commutative ring

O(f xg) = O(f)O(g)

7Feigin$ Hashizume, Hoshino, Shiraishi and Yanagida *09



The isomorphism of A and Ar

The map O defines a ring isomorphism Ar — A

This follows by noting that

E, = Olex(z;q1))
Similarly one constructs more Macdonald operators
= O(an(z93))
n=0(e(z2))

and computes their eigenvalues using identities for symmetric functions.

QD

)

We can state three relations

ex(zq1) = ex(x)
ex(z;q3) = 8a(x;4,1)
ex(z;q2) = fa(x;9,1)

where f\ = fi, -+ fa N is defined by another generating function

F@) = filsg, N =expy % — L7

k>0 r>0 4



A lattice model

L
=

> b

4_1_4,, c +
Y A A A
A%k’(;/ %F

This is the six vertex model associated to U,(sAlz). The states are encoded by

a 0 0 0 1 (10) ' 02) 0

0 b ¢ 0 0 1= ‘== 0

R= 0 c b 0 or R(x) = 0 1|_ll tl(ll);) 0
1—12x 1—12x

and the Yang—Baxter equation is satisfied

Rip(x2/x1)Ri3(x3/x1)Ro3(x3/x2) = Ro3(x3/x2)R1,3(x3/x1)R1 2 (x2/x1)

The six vertex partition function on a domain C is given by

z= ] Ry

(ij)ec



Partition functions and shuffle elements

Consider the partition functions Zpw

\ \ 4

This is known as the (Korepin’s) domain wall partition function and it is equal to a
determinant (Izergin’s determinant)

Zpw(x;y) oc det ———————=
(x:3) 1<iy<n (yi — ;) (vi — 1)

Consider the case y; = gx; and set xn(z) := Zpw(z; g2)

(a) = I1.;(qz — 7)(qz — 1z)) ot 1
! [T.,G—z)t 1=ii<e (g — 7)(qz — 1z;)

Claim: x,(z) € A and

O(xn(2))Pa(x;q,1) = halg™' ™", ™21, )PA(x; 4, 1)
XA (2) = ha(x)



Coloured vertex models

Generalization the previous model by colouring lattice paths
Jb

RI“P(x/y) = X Ja

ia, ip
ip

y

where {ia, ip} = {ja,j»} as sets. This R-matrix is associated to U,(gln).

The weights are

Rl (x) = t9(ia<ib)x9(ia<iu)(1 _ t9(1'a:ib)x9(ia:ia))

a1

where 0(True) = 1 and 6(False) = 0.

Claim: square domain coloured partition functions with the specialized weights
yi = qx; produce more elements of .4 with a similar action as previous operators.®

8AG and P. Zinn-Justin, in preparation



Vertices of a more general model

e Start with the six vertex model description using particles (boxes)

o o o o 2
4 2,0 2,0 o, o E,Q+D,D+D
2 o ] 2 o o
e Add higher edge states
) m o o B ) @
S S O A AP IO B
o s] [ 2 2 ]

o Allow arbitrary Young diagrams such that the number of boxes is conserved

B a2 @
S g sy

A vertex model of this type can be constructed using the Fock rep. of Uq,,((g;l1 ).



The quantum group U, ,(gl,)

This quantum group Uq,,(g'l 1) is generated by four currents, two central elements
¢, ¢t and depends on two parameters ¢ and ¢

e(@), fR), ¥, ¥ (2

The defining relations are written using the same function g(z, w)

e(w)e(z) = Mf(z)e(“’)

g(w,2)

—c _*g(Z,W) +/ —c e(w
e(w)p" (g~ 2) = 2w ¥ (g~ 2)e(w),

The currents 1) (2) are e.g.f. for some Heisenberg elements /i,
L > r —r r
V() =q7 expE Y (¢ —q Vhet"
r=1

The coproduct is

Ale(z)) = e(zg™?) ®@9PT (24~ ?) + 1 @ e(2)
Ah)=h@1+q "1Qh,,. ..



The Fock representation and the R-matrix

The Fock module F, is a representation’ of U, (gl,): h, — a, and

u! u

fl@) = mﬂ@v ez) = mf(z)
where £(z) is a vertex operator similar to 7(z).

U,.(gl,) is a quantum double, a consequence is:

R)=exp | Y kg, )a, @a-, (q/t) " 3@+ R(u)

r>1

R(u) equals to a generator of a modified operator'® O (e,(z; ¢2))

Ry =" ”r;

n>0

(en(z392))

In the Macdonald basis it has the form

1
ZPX% Yq,)ZWfp,()

(i) EpNo

9Feigin, Kojima, Shiraishi and Watanabe *07; Feigin and Tsimbalyuk 09; Schiffmann and Vasserot *13
1
0AG and A. Negut, in preparation



