RANK FUNCTIONS AND INVARIANTS OF DELTA-MATROIDS

MATT LARSON

Abstract

In this note, we give a rank function axiomatization for delta-matroids and study the corresponding rank generating function. We relate an evaluation of the rank generating function to the number of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the theory of Lorentzian polynomials.

1. Introduction

Let $[n, \bar{n}]$ denote the set $\{1, \ldots, n, \overline{1}, \ldots, \bar{n}\}$, equipped with the obvious involution $\overline{(\cdot)}$. Let AdS_{n} be the set of admissible subsets of $[n, \bar{n}]$, i.e., subsets S that contain at most one of i and \bar{i} for each $i \in[n]$. Set $e_{\bar{i}}:=-e_{i} \in \mathbb{R}^{n}$, and for each $S \in \operatorname{AdS}_{n}$, set $e_{S}=\sum_{a \in S} e_{a}$.

Definition 1.1. A delta-matroid D is a collection $\mathcal{F} \subset \mathrm{AdS}_{n}$ of admissible sets of size n, called the feasible sets of D, such that the polytope

$$
P(D):=\operatorname{Conv}\left\{e_{B}: B \in \mathcal{F}\right\}
$$

has all edges parallel to e_{i} or $e_{i} \pm e_{j}$, for some i, j. We say that D is even if all edges of $P(D)$ are parallel to $e_{i} \pm e_{j}$.

Delta-matroids were introduced in [7] by replacing the usual basis exchange axiom for matroids with one involving symmetric difference. They were defined independently in 14 . 17 . For the equivalence of the definition of delta-matroids in those works with the one given above, and for general properties of delta-matroids, see [6, Chapter 4].

A delta-matroid is even if and only if all sets in $\{B \cap[n]: B \in \mathcal{F}\}$ have the same parity. Even deltamatroids enjoy nicer properties than arbitrary delta-matroids. For instance, they satisfy a version of the symmetric exchange axiom 32 .

There are many constructions of delta-matroids in the literature. Two of the most fundamental come from matroids: given a matroid M on $[n]$, we can construct a delta-matroid on $[n, \bar{n}]$ whose feasible sets are the sets of the form $B \cup \overline{B^{c}}$, for B a basis of M. We can also construct a delta-matroid whose feasible sets are the sets of the form $I \cup \overline{I^{c}}$, for I independent in M. Additionally, there are delta-matroids corresponding to graphs 18], graphs embedded in surfaces [15, 16, and points of a maximal orthogonal or symplectic Grassmannian. Delta-matroids arising from points of a maximal orthogonal or symplectic Grassmannian are called realizable. See [21, Section 6.2] for a discussion of delta-matroids associated to points of a maximal orthogonal Grassmannian.

Given $S, T \in \operatorname{AdS}_{n}$, we define $S \sqcup T=\{a \in S \cup T: \bar{a} \notin S \cup T\}$. A function $g: \operatorname{AdS}_{n} \rightarrow \mathbb{R}$ is called bisubmodular if, for all $S, T \in \operatorname{AdS}_{n}$,

$$
f(S)+f(T) \geq f(S \cap T)+f(S \sqcup T)
$$

There is a large literature on bisubmodular functions, beginning with 19 . They have been studied both from an optimization perspective $[23,24]$ and from a polytopal perspective 22,25$]$. Additionally, bisubmodular functions are closely related to jump systems 11].

For a delta-matroid D, define a function $g_{D}: \operatorname{AdS}_{n} \rightarrow \mathbb{Z}$ by

$$
g_{D}(S)=\max _{B \in \mathcal{F}}(|S \cap B|-|\bar{S} \cap B|)
$$

We call g_{D} the rank function of D. Note that g_{D} may take negative values. The collection of feasible subsets of D is exactly $\left\{S: g_{D}(S)=n\right\}$, so D can be recovered from g_{D}.
Theorem 1.2. A function $g: \operatorname{AdS}_{n} \rightarrow \mathbb{Z}$ is the rank function of a delta-matroid if and only if
(1) $g(\emptyset)=0$ (normalization),
(2) $|g(S)| \leq 1$ if $|S|=1$ (boundedness),
(3) $g(S)+g(T) \geq g(S \cap T)+g(S \sqcup T)$ (bisubmodularity), and
(4) $g(S) \equiv|S|(\bmod 2)$ (parity).

Furthermore, D is even if and only if

$$
g_{D}(S)=\frac{g_{D}(S \cup i)+g_{D}(S \cup \bar{i})}{2} \text { whenever }|S|=n-1 \text { and }\{i, \bar{i}\} \cap S=\emptyset .
$$

The function g_{D}, as well as the observation that it is bisubmodular, has appeared before in the literature [8,14]. For example, in [8, Theorem 4.1] it is shown that, if D is represented by a point of the maximal symplectic Grassmannian, then g_{D} can be computed in terms of the rank of a certain matrix. It was known that delta-matroids admit a description in terms of certain bisubmodular functions. However, the precise characterization in Theorem 1.2 does not appear to have been known before. Indeed, Theorem 1.2 answers a special case of 2 , Question 9.4].

In 9,10 , Bouchet gave a rank-function axiomatization of delta-matroids in the more general setting of multimatroids. His rank function differs from ours - in Section 2.2, we discuss the relationship between his results and Theorem 1.2 ,

Basic operations operations on delta-matroids - like products, deletion, contraction, and projection can be simply expressed in terms of rank functions. See Section 2.1.

One of the most important invariants of a matroid M of rank r on $[n]$ is its Whitney rank generating function. If rk_{M} is the rank function of M, then the rank generating function is defined as

$$
R_{M}(u, v):=\sum_{A \subset[n]} u^{r-\mathrm{rk}_{M}(A)} v^{|A|-\mathrm{rk}_{M}(A)} .
$$

The more commonly used normalization is the Tutte polynomial, which is $R_{M}(u-1, v-1)$. The characterization of delta-matroids in terms of rank functions allows us to consider an analogously-defined invariant.

Definition 1.3. Let D be a delta-matroid on $[n, \bar{n}]$. Then we define

$$
U_{D}(u, v)=\sum_{S \in \operatorname{AdS}_{n}} u^{n-|S|} v^{\frac{|S|-g_{D}(S)}{2}}
$$

Note that the bisubmodularity of g_{D} implies that the restriction of g_{D} to the subsets of any fixed $S \in \operatorname{AdS}_{n}$ is submodular. The boundedness of g_{D} then implies that $\left|g_{D}(S)\right| \leq|S|$. Because of the parity requirement, $|S|-g_{D}(S)$ is divisible by 2 . Therefore $U_{D}(u, v)$ is indeed a polynomial. The normalization $U_{D}(u-1, v-1)$ is more analogous to the Tutte polynomial, but it can have negative coefficients. However, the polynomial $U_{D}(u, v-1)$ has non-negative coefficients (as follows, e.g., from Proposition 3.1.

The U-polynomial of a delta-matroid was introduced by Eur, Fink, Spink, and the author in 21, Definition 1.4] in terms of a Tutte polynomial-like recursion; see Proposition 3.1 for a proof that Definition 1.3 agrees with the recursive definition considered there. The specialization $\overline{U_{D}}(0, v)$ is the interlace polynomial of D, which was introduced in 3 for graphs and in 13 for general delta-matroids. See 29 for a survey on the properties of the interlace polynomial.

Various Tutte polynomial-like invariants of delta-matroids have been considered in the literature, such as the Bollobás-Riordan polynomial and its specializations [5]. In 27], a detailed analysis of delta-matroid polynomials which satisfy a deletion-contraction formula is carried out. Set $\sigma_{D}(A)=\frac{|A|}{2}+\frac{g_{D}(A)+g_{D}(\bar{A})}{4}$ for $A \subset[n]$. Then in 27], the polynomial

$$
\sum_{A \subset[n]}(x-1)^{\sigma_{D}([n])-\sigma_{D}(A)}(y-1)^{|A|-\sigma_{D}(A)}
$$

is shown to be, in an appropriate sense, the universal invariant of delta-matroids which satisfies a deletioncontraction formula. This polynomial is a specialization of the Bollobás-Riordan polynomial. In [20], it is shown that this polynomial has several nice combinatorial properties.
Example 1.4. 21, Example 5.5 and 5.6] Let M be a matroid of rank r on $[n]$, and let $S=S^{+} \cup \overline{S^{-}} \in \operatorname{AdS}_{n}$ be an admissible set with $S^{+}, S^{-} \subset[n]$. Set $V=\{i \in[n]: S \cap\{i, \bar{i}\}=\emptyset\}$. Above, we gave two examples of delta-matroids constructed from M.
(1) Let D be the delta-matroid arising from the independent sets of M. Then $g_{D}(S)=|S|+2 \mathrm{rk}_{M}\left(S^{+}\right)-$ $2\left|S^{+}\right|$, and

$$
U_{D}(u, v)=(u+1)^{n-r} R_{M}\left(u+3, \frac{2 u+v+2}{u+1}\right)
$$

(2) Let D be the delta-matroid arising from the bases of M. Then $g_{D}(S)=|S|-2 r+2 \operatorname{rk}_{M}\left(S^{+} \cup V\right)-$ $2\left|S^{+}\right|+2 \mathrm{rk}_{M}\left(S^{+}\right)$, and

$$
U_{D}(u, v)=\sum_{T \subset S \subset[n]} u^{|S \backslash T|} v^{r-\mathrm{rk}_{M}(S)+|T|-\mathrm{rk}_{M}(T)}
$$

We study the U-polynomial as a delta-matroid analogue of the rank generating function of a matroid. For a matroid M, the evaluation $R_{M}(u, 0)$ is essentially the f-vector of the independence complex of the matroid, i.e., it counts the number of independent sets of M of a given size.

A set $S \in \mathrm{AdS}_{n}$ is independent if it is contained in a feasible set of a delta-matroid D. In [9], Bouchet gave an axiomatization of delta-matroids in terms of their independent sets. The independent sets form a simplicial complex, called the independence complex of D. We relate $U_{D}(u, 0)$ to the f-vector of the independence complex of D (Proposition 3.4), which gives linear inequalities between the coefficients of $U_{D}(u, 0)$.

Following a tradition in matroid theory (see, e.g., 28), and inspired by the ultra log-concavity of $R_{M}(u, 0)$ 1.12], we make three log-concavity conjectures for $U_{D}(u, 0)$. These conjectures state the sequence of the number of independent sets of a delta-matroid of a given size satisfies log-concavity properties.

Conjecture 1.5. Let D be a delta-matroid on $[n, \bar{n}]$, and let $U_{D}(u, 0)=a_{n}+a_{n-1} u+\cdots+a_{0} u^{n}$. Then, for any $k \in\{1, \ldots, n-1\}$,
(1) $a_{k}^{2} \geq \frac{n-k+1}{n-k} a_{k+1} a_{k-1}$,
(2) $a_{k}^{2} \geq \frac{2 n-k+1}{2 n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$, and
(3) $a_{k}^{2} \geq \frac{n-k+1}{n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$.

Conjecture 1.5 (1) follows from 21, Conjecture 1.5], and it is proven in 21, Theorem B] when D has an enveloping matroid (see Definition 3.8). This is a technical condition which is satisfied by many commonly occurring delta-matroids, including all realizable delta-matroids and delta-matroids arising from matroids (although not all delta-matroids, see 9, Section 4] and [21, Example 6.11]). The proof uses algebro-geometric methods. Here we prove a special case of Conjecture 1.5(2).

Theorem 1.6. Let D be a delta-matroid on $[n, \bar{n}]$ which has an enveloping matroid. Let $U_{D}(u, 0)=a_{n}+$ $a_{n-1} u+\cdots+a_{0} u^{n}$. Then, for any $k \in\{1, \ldots, n-1\}, a_{k}^{2} \geq \frac{2 n-k+1}{2 n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$, i.e., Conjecture 1.5(2) holds.

Our argument uses the theory of Lorentzian polynomials 12 . We strengthen Theorem 1.6 by proving that a generating function for the independent sets of D is Lorentzian (Theorem 3.11), which implies the desired log-concavity statement. We deduce that this generating function is Lorentzian from the fact that the Potts model partition function of an enveloping matroid is Lorentzian [12, Theorem 4.10].

When D is the delta-matroid arising from the independent sets of a matroid, Conjecture 1.5 (3) follows from the ultra log-concavity of the number of independent sets of that matroid 1,12 . When D is the deltamatroid arising from the bases of a matroid M on $[n]$, which has an enveloping matroid by [21, Proposition 6.10], Theorem 1.6 gives a new log-concavity result. If we set

$$
a_{k}=\mid\{T \subset S \subset[n]: T \text { independent in } M \text { and } S \text { spanning in } M,|S \backslash T|=n-k\} \mid
$$

then Theorem 1.6 gives that $a_{k}^{2} \geq \frac{2 n-k+1}{2 n-k} \frac{k+1}{k} a_{k+1} a_{k-1}$ for $k \in\{1, \ldots, n-1\}$.
Acknowledgements: We thank Nima Anari, Christopher Eur, Satoru Fujishige, and Steven Noble for enlightening conversations, and we thank Christopher Eur, Steven Noble, and Shiyue Li for helpful comments on a previous version of this paper. The author is supported by an NDSEG fellowship.

2. Rank functions of delta-matroids

The proof of Theorem 1.2 goes by way of a polytopal description of normalized bisubmodular functions, which we now recall. To a function $f: \operatorname{AdS}_{n} \rightarrow \mathbb{R}$ with $f(\emptyset)=0$, we associate the polytope

$$
P(f)=\left\{x:\left\langle e_{S}, x\right\rangle \leq f(S) \text { for all non-empty } S \in \operatorname{AdS}_{n}\right\} .
$$

By [11, Theorem 4.5] (or 2, Theorem 5.2]), $P(f)$ has all edges parallel to e_{i} or $e_{i} \pm e_{j}$ if and only if f is bisubmodular. In this case, $P(f)$ is a lattice polytope if and only if f is integer-valued. For a normalized (i.e., $f(\emptyset)=0$) bisubmodular function f, we can recover f from $P(f)$ via the formula

$$
f(S)=\max _{x \in P(f)}\left\langle e_{S}, x\right\rangle
$$

Under this dictionary, the bisubmodular function corresponding to the dilate $k P(f)$ is $k f$, and the bisubmodular function corresponding to the Minkowski sum $P(f)+P(g)$ is $f+g$.

Proof of Theorem 1.2. By the polyhedral description of normalized bisubmodular functions, for each deltamatroid D there is a unique normalized bisubmodular function g such that $P(D)=P(g)$. We show that the conditions on a normalized bisubmodular function g for $P(g)$ to have all vertices in $\{-1,1\}^{n}$ are exactly those given in Theorem 1.2 , namely that $|g(S)| \leq 1$ when $|S|=1$ and $g(S) \equiv|S|(\bmod 2)$.

The polytope $P(g)$ has all vertices in $\{ \pm 1\}^{n}$ if and only if $\frac{1}{2}(P(g)+(1, \ldots, 1))$ is a lattice polytope which is contained in $[0,1]^{n}$. The normalized bisubmodular function h corresponding to the point $(1, \ldots, 1)$ takes value $h(S)=\left|S^{+}\right|-\left|S^{-}\right|$on an admissible set of the form $S=S^{+} \cup \overline{S^{-}}$, with $S^{+}, S^{-} \subset[n]$. The polytope $\frac{1}{2}(P(g)+(1, \ldots, 1))$ is $P(f)$, where f is the normalized bisubmodular function defined by $f:=\frac{1}{2}(g+h)$. We note that $P(f)$ is a lattice polytope which is contained in $[0,1]^{n}$ if and only if
(1) $f(i) \in\{0,1\}$ and $f(\bar{i}) \in\{-1,0\}$, and
(2) f is integer-valued.

A normalized bisubmodular function f satisfies these conditions if and only if g satisfies the conditions of Theorem 1.2, giving the characterization of rank functions of delta-matroids.

By 2, Example 5.2.3], the polytope $P\left(g_{D}\right)=P(D)$ has all edges parallel to $e_{i} \pm e_{j}$ if and only if g_{D} satisfies the condition

$$
g_{D}(S)=\frac{g_{D}(S \cup i)+g_{D}(S \cup \bar{i})}{2} \text { whenever }|S|=n-1 \text { and }\{i, \bar{i}\} \cap S=\emptyset .
$$

This gives the characterization of even delta-matroids.
2.1. Compatibility with delta-matroid operations. In this section, we consider several operations on delta-matroids, and we show that the rank function behaves in a simple way under these operations. First we consider minor operations on delta-matroids - contraction, deletion, and projection.
Definition 2.1. Let D be a delta-matroid on $[n, \bar{n}]$ with feasible sets \mathcal{F}, and let $i \in[n]$. We say that i is a loop of D if no feasible set contains i, and we say that i is a coloop if every feasible set contains i.
(1) If i is not a loop of D, then the contraction D / i is the delta-matroid with feasible sets $B \backslash i$, for $B \in \mathcal{F}$ containing i.
(2) If i is not a coloop of D, then the deletion $D \backslash i$ is the delta-matroid with feasible sets $B \backslash \bar{i}$, for $B \in \mathcal{F}$ containing \bar{i}.
(3) The projection $D(i)$ is the delta-matroid with feasible sets $B \backslash\{i, \bar{i}\}$ for $B \in \mathcal{F}$.
(4) If i is a loop or coloop, then set $D / i=D \backslash i=D(i)$.

For $A \subset[n]$, we define $D / A, D \backslash A$, and $D(A)$ to be the delta-matroids on $[n, \bar{n}] \backslash(A \cup \bar{A})$ obtained by successively contracting, deleting, or projecting away from all elements of A. Contractions, deletions, and projections at disjoint sets commute with each other, so this is well defined. If A and B are disjoint subsets of $[n]$, then $D / A \backslash B$ is the delta-matroid obtained by contracting A and then deleting B, which is the same as first deleting B and then contracting A.

First we describe the rank function of projections. The formula is analogous to the formula for the rank function of a matroid deletion.
Proposition 2.2. Let D be a delta-matroid on $[n, \bar{n}]$, and let $A \subset[n]$. For each $S \in \operatorname{AdS}_{n}$ disjoint from $A \cup \bar{A}, g_{D(A)}(S)=g_{D}(S)$.

Proof. As S is disjoint from $A \cup \bar{A},|B \cap S|-|B \cap \bar{S}|$ depends only on $B \backslash(A \cup \bar{A})$. The feasible sets of $D(A)$ are given by $B \backslash(A \cup \bar{A})$ for B a feasible set of D.

The rank functions of the contractions and deletions are described by the following result. The formula is analogous to the formula for the rank function of a matroid contraction.

Proposition 2.3. Let D be a delta-matroid on $[n, \bar{n}]$. Let $A, B \subset[n]$ be disjoint subsets, and let $S \in \operatorname{AdS}_{n}$ be disjoint from $A \cup B \cup \bar{A} \cup \bar{B}$. Then $g_{D / A \backslash B}(S)=g_{D}(S \cup A \cup \bar{B})-g_{D}(A \cup \bar{B})$.

Before proving this, we will need the following property of delta-matroids. It follows, for instance, from the greedy algorithm description of delta-matroids in 11 .
Proposition 2.4. Let D be a delta-matroid on $[n, \bar{n}]$, and let $S \subset T \in \operatorname{AdS}_{n}$. Let \mathcal{F}_{S} be the collection of feasible sets B of D that maximize $|S \cap B|$, i.e., have $|S \cap B|=\max _{B^{\prime} \in \mathcal{F}}\left|S \cap B^{\prime}\right|$. Then

$$
\max _{B \in \mathcal{F}_{S}}|T \cap B|=\max _{B \in \mathcal{F}}|T \cap B| .
$$

First we consider the case when we delete or contract a single element.
Lemma 2.5. Let D be a delta-matroid on $[n, \bar{n}]$, and let $i \in[n]$. Then
(1) If i is not a loop, then $g_{D / i}(S)=g_{D}(S \cup i)-1$,
(2) If i is not a coloop, then $g_{D \backslash i}(S)=g_{D}(S \cup \bar{i})-1$, and

Proof. We do the case of contraction; the case of deletion is identical. Assume that i is not a loop, and let \mathcal{F}_{i} denote the set of feasible sets in D which contain i. Note that \mathcal{F}_{i} is non-empty, so it is the collection of feasible sets B of D which maximize $|\{i\} \cap B|$. For any $S \in \operatorname{AdS}_{n}$ with $S \cap\{i, \bar{i}\}=\emptyset$, by Proposition 2.4 we have that

$$
\max _{B \in \mathcal{F}}|(S \cup i) \cap B|=\max _{B \in \mathcal{F}_{i}}|(S \cup i) \cap B|
$$

For any $B,|(S \cup i) \cap B|-|\overline{(S \cup i)} \cap B|=2|(S \cup i) \cap B|-|S \cup i|$, so we see that

$$
\max _{B \in \mathcal{F}}(|(S \cup i) \cap B|-\overline{(S \cup i)} \cap B \mid)=\max _{B \in \mathcal{F}_{i}}(|(S \cup i) \cap B|-|\overline{(S \cup i)} \cap B|)
$$

The left-hand side is equal to $g_{D}(S \cup i)$, and the right-hand side is equal to $g_{D / i}(S)+1$.
Proof of Proposition 2.3. First note that $g_{D}(i)=1$ if i is not a loop and is -1 if i is a loop, and similarly $g_{D}(\bar{i})=1$ if i is not a coloop and is -1 is i is a coloop. So Lemma 2.5 implies the result holds when $|S|=1$.

We induct on the size of $A \cup B$. We consider the case of adding an element $i \in[n]$ to A; the case of adding it to B is identical. We compute:

$$
\begin{aligned}
g_{D /(A \cup i) \backslash B}(S) & =g_{D / A \backslash B}(S \cup i)-g_{D / A \backslash B}(i) \\
& =g_{D}(S \cup A \cup \bar{B} \cup i)-g_{D}(A \cup \bar{B})-\left(g_{D}(A \cup \bar{B} \cup i)-g_{D}(A \cup \bar{B})\right) \\
& =g_{D}(S \cup(A \cup i) \cup \bar{B})-g_{D}((A \cup i) \cup \bar{B}) .
\end{aligned}
$$

For two non-negative integers n_{1}, n_{2}, identify the disjoint union of [n_{1}] and [n_{2}] with [$n_{1}+n_{2}$]. Given two delta-matroids D_{1}, D_{2} on $\left[n_{1}\right]$ and $\left[n_{2}\right]$, let $D_{1} \times D_{2}$ be the delta-matroid on $\left[n_{1}+n_{2}\right.$] whose feasible sets are $B_{1} \cup B_{2}$, for B_{i} a feasible set of D_{i}. Then we have the following description of the rank function of $D_{1} \times D_{2}$.

Proposition 2.6. Let D_{1}, D_{2} be delta-matroids on $\left[n_{1}\right]$ and $\left[n_{2}\right.$], and let $S=S_{1} \cup S_{2}$ be an admissible subset of $\left[n_{1}+n_{2}, \overline{n_{1}+n_{2}}\right]$, with $S_{1} \subset\left[n_{1}, \bar{n}_{1}\right]$ and $S_{2} \subset\left[n_{2}, \bar{n}_{2}\right]$. Then $g_{D_{1} \times D_{2}}(S)=g_{D_{1}}\left(S_{1}\right)+g_{D_{2}}\left(S_{2}\right)$.
Proof. Let B_{1} be a feasible set of D_{1} with $g_{D_{1}}\left(S_{1}\right)=\left|S_{1} \cap B_{1}\right|-\left|\overline{S_{1}} \cap B_{1}\right|$, and let D_{2} be a feasible set of D_{2} with $g_{D_{2}}\left(S_{2}\right)=\left|S_{2} \cap B_{2}\right|-\left|\overline{S_{2}} \cap B_{2}\right|$. Then $B_{1} \cup B_{2}$ maximizes $B \mapsto|S \cap B|-|\bar{S} \cap B|$, and so $g_{D_{1} \times D_{2}}(S)=\left|S_{1} \cap B_{1}\right|-\left|\overline{S_{1}} \cap B_{1}\right|+\left|S_{2} \cap B_{2}\right|-\left|\overline{S_{2}} \cap B_{2}\right|=g_{D_{1}}\left(S_{1}\right)+g_{D_{2}}\left(S_{2}\right)$.

We now study how the rank functions behave under the operation of twisting. Let W be the signed permutation group, the subgroup of the symmetric group on $[n, \bar{n}]$ which preserves AdS_{n}. In other words, W consists of permutations w such that $w(\bar{i})=\overline{w(i)}$. As delta-matroids are collections of admissible sets, W acts on the set of delta-matroids on $[n, \bar{n}]$. This action is usually called twisting in the delta-matroid literature.

Proposition 2.7. Let D be a delta-matroid on $[n, \bar{n}]$, and let $w \in W$. Then $g_{w \cdot D}(S)=g_{D}\left(w^{-1} \cdot S\right)$.
Proof. Note that, for B a feasible set of $D,|S \cap(w \cdot D)|-|\bar{S} \cap(w \cdot D)|=\left|\left(w^{-1} \cdot S\right) \cap D\right|-\left|\overline{\left(w^{-1} \cdot S\right)} \cap D\right|$, which implies the result.

Let $S \in \operatorname{AdS}_{n}$ be an admissible set of size n. For any delta-matroid D on $[n, \bar{n}]$, let r be the maximal value of $|S \cap B|$. Then $\{S \cap B: B \in \mathcal{F},|S \cap B|=r\}$ is the set of bases of a matroid on S. When $S=[n]$, this is sometimes called the upper matroid of D. We describe the rank function of this matroid in terms of the rank function of D.

Proposition 2.8. Let $S \in \mathrm{AdS}_{n}$ be an admissible set of size n, and let D be a delta-matroid on $[n, \bar{n}]$ with $r=\max _{B \in \mathcal{F}}|S \cap B|$. The matroid M on S whose bases are $\{S \cap B: B \in \mathcal{F},|S \cap B|=r\}$ has rank function

$$
\mathrm{rk}_{M}(T)=\frac{g_{D}(T)+|T|}{2}
$$

Proof. Let \mathcal{F}_{S} be the collection of feasible sets B with $|S \cap B|=r$. Then we have that

$$
\mathrm{rk}_{M}(T)=\max _{B \in \mathcal{F}_{S}}|T \cap B| \leq \max _{B \in \mathcal{F}}|T \cap B|=\frac{g_{D}(T)+|T|}{2}
$$

On the other hand, by Proposition 2.4 there is a feasible set B which maximizes $|T \cap B|$ and has $|S \cap B|=r$, so we have equality.
2.2. An alternative normalization. The results of the previous section, particularly Proposition 2.8 , suggest that an alternative normalization of the rank function of a delta-matroid has nice properties. Set

$$
h_{D}(S):=\frac{g_{D}(S)+|S|}{2} .
$$

The function $h_{D}(S)$ is integer-valued and bisubmodular, and the polytope it defines is $P\left(h_{D}\right)=\frac{1}{2}(P(D)+\square)$, where $\square=[-1,1]^{n}$ is the cube. This is because the bisubmodular function corresponding to \square is $S \mapsto|S|$. Note that the function h_{D} is non-negative and increasing, in the sense that if $S \subset T \in \operatorname{AdS}_{n}$, then $h_{D}(S) \leq$ $h_{D}(T)$. Theorem 1.2 implies the following characterization of the functions arising as h_{D} for some deltamatroid D.

Corollary 2.9. A function $h: \operatorname{AdS}_{n} \rightarrow \mathbb{Z}$ is equal to h_{D} for some delta-matroid D if and only if
(1) $h(\emptyset)=0$ (normalization),
(2) $h(S) \in\{0,1\}$ if $|S|=1$ (boundedness),
(3) $h(S)+h(T) \geq h(S \cap T)+h(S \sqcup T)+|S \cap \bar{T}| / 2$.

Indeed, these are exactly the conditions we need for $g(S):=2 h(S)-|S|$ to satisfy the conditions in Theorem 1.2

The function h_{D} was studied by Bouchet in $[9,10$ in the more general setting of multimatroids. The following characterization of the functions h_{D} follows from 9, Proposition 4.2]:
Proposition 2.10. A function $h: \operatorname{AdS}_{n} \rightarrow \mathbb{Z}$ is equal to h_{D} for some delta-matroid D if and only if
(1) $h(\emptyset)=0$,
(2) $h(S) \leq h(S \cup a) \leq h(S)+1$ if $S \cup a$ is admissible,
(3) $h(S)+h(T) \geq h(S \cap T)+h(S \cup T)$ if $S \cup T$ is admissible, and
(4) $h(S \cup i)+h(S \cup \bar{i}) \geq 2 h(S)+1$ if $S \cap\{i, \bar{i}\}=\emptyset$.

In [10, Theorem 2.16], a third characterizations of the functions h_{D} is stated with a reference to an unpublished paper of Allys.

3. The U-polynomial

We now study the U-polynomial of delta-matroids. We prove the following recursion for $U_{D}(u, v)$, which was the original definition of the U-polynomial in 21, Definition 1.4].

Proposition 3.1. If $n=0$, the $U_{D}(u, v)=1$. For any $i \in[n]$, the U-polynomial satisfies

$$
U_{D}(u, v)= \begin{cases}U_{D / i}(u, v)+U_{D \backslash i}(u, v)+u U_{D(i)}(u, v), & i \text { is neither a loop nor a coloop } \\ (u+v+1) \cdot U_{D \backslash i}(u, v), & i \text { is a loop or a coloop. }\end{cases}
$$

First we study the behavior of the U-polynomial under products.
Lemma 3.2. Let D_{1}, D_{2} be delta-matroids on $\left[n_{1}, \bar{n}_{1}\right]$ and $\left[n_{2}, \bar{n}_{2}\right]$. Then $U_{D_{1} \times D_{2}}(u, v)=U_{D_{1}}(u, v) U_{D_{2}}(u, v)$.

Proof. We compute:

$$
\begin{aligned}
U_{D_{1}}(u, v) U_{D_{2}}(u, v) & =\left(\sum_{S_{1} \in \operatorname{AdS}_{n_{1}}} u^{n_{1}-\left|S_{1}\right|} v^{\frac{\left|S_{1}\right|-g_{D_{1}}\left(S_{1}\right)}{2}}\right)\left(\sum_{S_{2} \in \operatorname{AdS}_{n_{2}}} u^{n_{2}-\left|S_{2}\right|} v^{\frac{\left|S_{2}\right|-g_{D_{2}}\left(S_{2}\right)}{2}}\right) \\
& =\sum_{\left(S_{1}, S_{2}\right)} u^{n_{1}+n_{2}-\left|S_{1}\right|-\left|S_{2}\right|} v^{\frac{\left|S_{1}\right|+\left|S_{2}\right|-g_{D_{1}}\left(S_{1}\right)-g_{D_{2}}\left(S_{2}\right)}{2}} \\
& =\sum_{\left(S_{1}, S_{2}\right)} u^{n_{1}+n_{2}-\left|S_{1}\right|-\left|S_{2}\right|} v^{\frac{\left|S_{1}\right|+\left|S_{2}\right|-g_{D_{1} \times D_{2}\left(S_{1} \cup S_{2}\right)}^{2}}{}} \\
& =U_{D_{1} \times D_{2}}(u, v),
\end{aligned}
$$

where the third equality is Proposition 2.6 .
Proof of Proposition 3.1. If $n=0$, then the only admissible subset of $[n, \bar{n}]$ is the empty set, and $g_{D}(\emptyset)=0$, so $U_{D}(u, v)=1$. Now choose some $i \in[n]$.

First suppose that i is neither a loop nor a coloop. The admissible subsets of $[n, \bar{n}]$ are partitioned into sets containing i, sets containing \bar{i}, and sets containing neither i nor \bar{i}. If S contains i, then $u^{n-|S|} v^{\frac{|S|-g_{D}(S)}{2}}=$ $u^{n-1-|S \backslash i|} v^{\frac{|S \backslash i|-g_{D / i}(S \backslash i)}{2}}$. If S contains \bar{i}, then $u^{n-|S|} v^{\frac{|S|-g_{D}(S)}{2}}=u^{n-1-|S \backslash i|} v^{\frac{|S \backslash \bar{i}|-g_{D \backslash i}(S \backslash \bar{i})}{2}}$. If S contains neither i not \bar{i}, then $u^{n-|S|} v^{\frac{|S|-g_{D}(S)}{2}}=u \cdot u^{n-1-|S|} v^{\frac{|S|-g_{D(i)}(S)}{2}}$. Adding these up implies the recursion in this case.

If i is a loop or a coloop, then D is the product of $D \backslash i$ with a delta-matroid on 1 element with 1 feasible set. We observe that U-polynomial of a delta-matroid on 1 element with 1 feasible set is $u+v+1$, and so Lemma 3.2 implies the recursion in this case.
3.1. The independence complex of a delta-matroid. In this section, we introduce the independence complex of a delta-matroid and use it to study the U-polynomial.

Definition 3.3. We say that $S \in \mathrm{AdS}_{n}$ is independent in D if $g_{D}(S)=|S|$, or, equivalently, if S is contained in a feasible subset of D. The independence complex of D is the simplicial complex on $[n, \bar{n}]$ whose facets are given by the feasible sets of D.

Let $S \in \operatorname{AdS}_{n}$, and let $T=\{i \in[n]: S \cap\{i, \bar{i}\}=\emptyset\}$. Note S is independent if and only if S is a feasible set of $D(T)$.
The following result is immediate from the definition of $U_{D}(u, 0)$.
Proposition 3.4. Let $f_{i}(D)$ be the number of i-dimensional faces of the independence complex of D. Then $U_{D}(u, 0)=f_{n-1}(D)+f_{n-2}(D) u+\cdots+f_{-1}(D) u^{n}$.

Note that the f-vector of a pure simplicial complex, like the independence complex of a delta-matroid, is a pure O-sequence. Then 26 gives the following inequalities.

Corollary 3.5. Let $U_{D}(u, 0)=a_{n}+a_{n-1} u+\cdots a_{0} u^{n}$. Then $\left(a_{0}, \ldots, a_{n}\right)$ is the f-vector of a pure simplicial complex. In particular, $a_{i} \leq a_{n-i}$ for $i \leq n / 2$ and $a_{0} \leq a_{1} \leq \cdots \leq a_{\left\lfloor\frac{n+1}{2}\right\rfloor}$.

Proposition 3.4 is a delta-matroid analogue of the fact that, for a matroid M, the coefficients of $R_{M}(u, 0)$, when written backwards, are the face numbers of the independence complex of M. The independence complex of a matroid is shellable [4], which is reflected in the fact that $R_{M}(u-1,0)$ has non-negative coefficients. The independence complex of a delta-matroid is not in general shellable or Cohen-Macaulay, and $U_{D}(u-1,0)$ can have negative coefficients.

Recall that $\square=[-1,1]^{n}$ is the cube. The map $S \mapsto e_{S}$ induces a bijection between AdS_{n} and lattice points of \square. We use this to give a polytopal description of the independent sets of D, which will be useful in the sequel.

Proposition 3.6. The map $S \mapsto e_{S}$ induces a bijection between independent sets of D and lattice points in $\frac{1}{2}(P(D)+\square)$.
Proof. If S is independent in D, then there is $T \in \operatorname{AdS}_{n}$ such that $S \cup T \in \mathcal{F}$. Then $e_{S}=\frac{1}{2}\left(e_{S \cup T}+e_{S \cup \bar{T}}\right)$, so e_{S} lies in $\frac{1}{2}(P(D)+\square)$.

The correspondence between normalized bisubmodular functions and polytopes gives that

$$
\frac{1}{2}(P(D)+\square)=\left\{x:\left\langle e_{S}, x\right\rangle \leq \frac{g_{D}(S)+|S|}{2}\right\} .
$$

If S is not independent, then e_{S} violates the inequality $\left\langle e_{S}, e_{S}\right\rangle \leq \frac{g_{D}(S)+|S|}{2}$, so e_{S} does not lie in $\frac{1}{2}(P(D)+$ $\square)$.

Remark 3.7. Let $U_{D}(u,-1)=b_{n}+b_{n-1} u+\cdots+b_{0} u^{n}$. In small examples, $\left(b_{0}, \ldots, b_{n}\right)$ is the f-vector a pure simplicial complex of dimension $(n-1)$. When M is a matroid, the coefficients of $R_{M}(u,-1)$, when written backwards, are the f-vector of the broken circuit complex of M. This suggests that $\left(b_{0}, \ldots, b_{n}\right)$ may be the f-vector of a delta-matroid analogue of the broken circuit complex, and, more generally, that there is an "activity" interpretation of the coefficients of $U_{D}(u, v-1)$. See [30, Corollary 5.3] for an enumerative interpretation of b_{n}.
3.2. Enveloping matroids. We now recall the definition of an enveloping matroid of a delta-matroid, which was introduced for algebro-geometric reasons in [21, Section 6]. A closely related notion was considered in 9].

For $S \subseteq[n, \bar{n}]$, let u_{S} denote the corresponding indicator vector in $\mathbb{R}^{[n, \bar{n}]}$. For a matroid M on $[n, \bar{n}]$, let $P(M)=\operatorname{Conv}\left\{u_{B}: B\right.$ basis of $\left.M\right\}$, and let $I P(M)=\operatorname{Conv}\left\{u_{S}: S\right.$ independent in M $\}$.

Definition 3.8. Let env: $\mathbb{R}^{[n, \bar{n}]} \rightarrow \mathbb{R}^{n}$ be the map given by $\left(x_{1}, \ldots, x_{n}, x_{\overline{1}}, \ldots, x_{\bar{n}}\right) \mapsto\left(x_{1}-x_{\overline{1}}, \ldots, x_{n}-x_{\bar{n}}\right)$. Let D be a delta-matroid on $[n, \bar{n}]$, and let M be a matroid on $[n, \bar{n}]$. We say that M is an enveloping matroid for D if $\operatorname{env}(P(M))=P(D)$.

Note that enveloping matroids necessarily have rank n. In [21, Section 6.3], it is shown that many different types of delta-matroids have enveloping matroids, such as realizable delta-matroids, delta-matroids arising from the independent sets or bases of a matroid, and delta-matroids associated to graphs or embedded graphs. We will need the following property of enveloping matroids.

Proposition 3.9. Let M be an enveloping matroid for a delta-matroid D on $[n, \bar{n}]$. Let $S \in \operatorname{AdS}_{n}$ be an admissible set. Then S is independent in M if and only if it is independent in D.

Proof. If $S \in \operatorname{AdS}_{n}$, then $\operatorname{env}\left(u_{S}\right)=e_{S}$, and S is the only admissible set with this property. Furthermore, if $S \in \operatorname{AdS}_{n}$ has size n, then u_{S} is the only indicator vector of a subset of $[n, \bar{n}]$ of size n which is a preimage e_{S} under env. Because $\operatorname{env}(P(M))=P(D)$, we see that if B is a feasible set of D, then B is a basis for M. This implies that the independent sets in D are independent in M.

By 21, Lemma 7.6], $\operatorname{env}(I P(M))=\frac{1}{2}(P(D)+\square)$. If S is admissible and independent in M, then $\operatorname{env}\left(u_{S}\right)=e_{S} \in \frac{1}{2}(P(D)+\square)$, so by Proposition 3.6. S is independent in D.
3.3. Lorentzian polynomials. For a multi-index $\mathbf{m}=\left(m_{0}, m_{1}, \ldots\right)$, let $w^{\mathbf{m}}=w_{0}^{m_{0}} w_{1}^{m_{1}} \ldots$. A homogeneous polynomial $f\left(w_{0}, w_{1}, \ldots\right)$ of degree d with real coefficients is said to be strictly Lorentzian if all its
coefficients are positive, and the quadratic form obtained by taking $d-2$ partial derivatives is nondegenerate with exactly one positive eigenvalue. We say that f is Lorentzian if it is a coefficient-wise limit of strictly Lorentzian polynomials. Lorentzian polynomials enjoy strong log-concavity properties, and the class of Lorentzian polynomials is preserved under many natural operations.

The following lemma is a special case of [31, Proposition 3.3]. Alternatively, it can be deduced from the proof of 12 , Corollary 3.5]. We thank Nima Anari for discussing this lemma with us.

Lemma 3.10. For a polynomial $f\left(w_{0}, w_{1}, \ldots\right)=\sum_{m} c_{m} w^{m}$, let

$$
\bar{f}\left(w_{0}, w_{1}, \ldots\right)=\sum_{m: m_{i} \leq 1 \text { for }} c_{m} w^{m}
$$

If f is Lorentzian, then \bar{f} is Lorentzian.
For $S \in \operatorname{AdS}_{n}$, let $\underline{S} \subset[n]$ denote the unsigned version of S, i.e., the image of S under the quotient of $[n, \bar{n}]$ by the involution. For a set T, let $w^{T}=\prod_{a \in T} w_{a}$. We now state a strengthening of Theorem 1.6 ,
Theorem 3.11. Let D be a delta-matroid on $[n, \bar{n}]$ which has an enveloping matroid. Then the polynomial

$$
\sum_{S \text { independent in } D} w_{0}^{2 n-|S|} w^{\underline{S}} \in \mathbb{R}\left[w_{0}, w_{1}, \ldots, w_{n}\right]
$$

is Lorentzian.
Remark 3.12. In [21, Theorem 8.1], it is proven that if D has an enveloping matroid, then the polynomial

$$
\sum_{S \text { independent in } D} \frac{w_{0}^{|S|}}{|S|!} w^{[n] \backslash \underline{S}} \in \mathbb{R}\left[w_{0}, w_{1}, \ldots, w_{n}\right]
$$

is Lorentzian.
Proof of Theorem 1.6. By [12, Theorem 2.10], the specialization

$$
\sum_{S \text { independent in } D} w_{0}^{2 n-|S|} y^{|S|}=\sum_{i=0}^{n} f_{i-1}(D) w_{0}^{2 n-i} y^{i}
$$

is Lorentzian. By [12, Example 2.26], the coefficients of a Lorentzian polynomial in two variables of degree $2 n$ are log-concave after dividing the coefficient of $w_{0}^{2 n-i} y^{i}$ by $\binom{2 n}{i}$, which implies the result.
Proof of Theorem 3.11. Let M be an enveloping matroid of D. By 12, Proof of Theorem 4.14], the polynomial

$$
\sum_{S \text { independent in } M} w_{0}^{2 n-|S|} w^{S} \in \mathbb{R}\left[w_{0}, w_{1}, \ldots, w_{n}, w_{\overline{1}}, \ldots, w_{\bar{n}}\right]
$$

is Lorentzian. Setting $w_{\bar{i}}=w_{i}$, by [12, Theorem 2.10] the polynomial

$$
\sum_{S \text { independent in } M} w_{0}^{2 n-|S|} w^{S \cap[n]} w^{\overline{S \cap[\bar{n}]}} \in \mathbb{R}\left[w_{0}, w_{1}, \ldots, w_{n}\right]
$$

is Lorentzian. A term $w_{0}^{2 n-|S|} w^{S \cap[n]} w^{\overline{S \cap[\bar{n}]}}$ has degree at most 1 in each of the variables w_{1}, \ldots, w_{n} if and only if S is admissible, in which case it is equal to w^{S}. Therefore, by Lemma 3.10 , the polynomial

$$
\sum_{S \in \mathrm{AdS}_{n} \text { independent in } M} w_{0}^{2 n-|S|} w^{\underline{S}} \in \mathbb{R}\left[w_{0}, w_{1}, \ldots, w_{n}\right]
$$

is Lorentzian. By Proposition 3.9, this polynomial is equal to the polynomial in Theorem 3.11 .

Remark 3.13. Let (U, Ω, r) be a multimatroid 9 , i.e., U is a finite set, Ω is a partition of U, and r is a function on partial transversals of Ω satisfying certain conditions. An independent set is a partial transversal S of Ω with $r(S)=|S|$. A multimatroid is called shelterable if r can be extended to the rank function of a matroid on U. Then the argument used to prove Theorem 1.6 shows that, if a_{k} is the number of independent sets of a shelterable multimatroid of size k, then

$$
a_{k}^{2} \geq \frac{|U|-k+1}{|U|-k} \frac{k+1}{k} a_{k+1} a_{k-1}
$$

References

[1] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant, Log-concave polynomials III: Mason's ultra-logconcavity conjecture for independent sets of matroids. arXiv:1807.00929v2.
[2] Federico Ardila, Federico Castillo, Christopher Eur, and Alexander Postnikov, Coxeter submodular functions and deformations of Coxeter permutahedra, Adv. Math. 365 (2020), 107039. MR4064768
[3] Richard Arratia, Béla Bollobás, and Gregory B. Sorkin, The interlace polynomial of a graph, J. Combin. Theory Ser. B 92 (2004), no. 2, 199-233. MR2099142
[4] Anders Björner, The homology and shellability of matroids and geometric lattices, Matroid applications, 1992, pp. 226-283. MR1165544
[5] Béla Bollobás and Oliver Riordan, A polynomial invariant of graphs on orientable surfaces, Proc. London Math. Soc. (3) 83 (2001), no. 3, 513-531. MR1851080
[6] Alexandre V. Borovik, Israel Gelfand, and Neil White, Coxeter matroids, Progress in Mathematics, vol. 216, Birkhäuser Boston, Inc., Boston, MA, 2003. MR1989953
[7] André Bouchet, Greedy algorithm and symmetric matroids, Math. Programming 38 (1987), no. 2, 147-159. MR904585
[8] , Representability of \triangle-matroids, Combinatorics (Eger, 1987), 1988, pp. 167-182. MR1221555
[9] _, Multimatroids. I. Coverings by independent sets, SIAM J. Discrete Math. 10 (1997), no. 4, 626-646. MR1477659
$[10] \quad, \quad$ Multimatroids. II. Orthogonality, minors and connectivity, Electron. J. Combin. 5 (1998), Research Paper 8, 25. MR1491784
[11] André Bouchet and William H. Cunningham, Delta-matroids, jump systems, and bisubmodular polyhedra, SIAM J. Discrete Math. 8 (1995), no. 1, 17-32. MR1315956
[12] Petter Brändén and June Huh, Lorentzian polynomials, Ann. of Math. (2) 192 (2020), no. 3, 821-891. MR4172622
[13] Robert Brijder and Hendrik Jan Hoogeboom, Interlace polynomials for multimatroids and delta-matroids, European J. Combin. 40 (2014), 142-167. MR3191496
[14] R. Chandrasekaran and Santosh N. Kabadi, Pseudomatroids, Discrete Math. 71 (1988), no. 3, 205-217. MR959006
[15] Carolyn Chun, Iain Moffatt, Steven D. Noble, and Ralf Rueckriemen, Matroids, delta-matroids and embedded graphs, J. Combin. Theory Ser. A 167 (2019), 7-59. MR3938888
[16] _ On the interplay between embedded graphs and delta-matroids, Proc. Lond. Math. Soc. (3) 118 (2019), no. 3, 675-700. MR3932785
[17] Andreas Dress and Timothy F. Havel, Some combinatorial properties of discriminants in metric vector spaces, Adv. in Math. 62 (1986), no. 3, 285-312. MR866162
[18] Alain Duchamp, Delta matroids whose fundamental graphs are bipartite, Linear Algebra Appl. 160 (1992), 99-112. MR1137846
[19] F. D. J. Dunstan and Dominic Welsh, A greedy algorithm for solving a certain class of linear programmes, Math. Programming 5 (1973), 338-353. MR335311
[20] Joanna A. Ellis-Monaghan, Andrew J. Goodall, Iain Moffatt, Steven D. Noble, and Lluís Vena, Irreducibility of the Tutte polynomial of an embedded graph, Algebr. Comb. 5 (2022), no. 6, 1337-1351. MR4529927
[21] Christopher Eur, Alex Fink, Matt Larson, and Hunter Spink, Signed permutohedra, delta-matroids, and beyond. arXiv:2209.06752v2.
[22] Satoru Fujishige, Bisubmodular polyhedra, simplicial divisions, and discrete convexity, Discrete Optim. 12 (2014), 115-120. MR3189029
[23] , Parametric bisubmodular function minimization and its associated signed ring family, Discrete Appl. Math. 227 (2017), 142-148. MR3661422
[24] Satoru Fujishige and Satoru Iwata, Bisubmodular function minimization, SIAM J. Discrete Math. 19 (2005), no. 4, 10651073. MR2206380
[25] Satoru Fujishige and Sachin Patkar, The box convolution and the Dilworth truncation of bisubmodular functions, 1994. Report No. 94823, Research Institute for Discrete Mathematics, University of Bonn.
[26] Takayuki Hibi, What can be said about pure O-sequences?, J. Combin. Theory Ser. A 50 (1989), no. 2, 319-322. MR989204
[27] Thomas Krajewski, Iain Moffatt, and Adrian Tanasa, Hopf algebras and Tutte polynomials, Adv. in Appl. Math. 95 (2018), 271-330. MR3759218
[28] John H. Mason, Matroids: unimodal conjectures and Motzkin's theorem, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), 1972, pp. 207-220. MR0349445
[29] Ada Morse, The interlace polynomial, Graph polynomials, 2017, pp. 1-23. MR3790909
[30] \qquad , Interlacement and activities in delta-matroids, European J. Combin. 78 (2019), 13-27. MR3906851
[31] Julius Ross, Hendrik Süss, and Thomas Wannerer, Dually Lorentzian polynomials. arXiv:2304.08399.
[32] Walter Wenzel, Δ-matroids with the strong exchange conditions, Appl. Math. Lett. 6 (1993), no. 5, 67-70. MR1349667
Stanford U. Department of Mathematics, 450 Jane Stanford Way, Stanford, CA 94305
Email address: mwlarson@stanford.edu

