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MATT LARSON

Abstract. In this note, we give a rank function axiomatization for delta-matroids and study the corre-

sponding rank generating function. We relate an evaluation of the rank generating function to the number

of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the
theory of Lorentzian polynomials.

1. Introduction

Let [n, n] denote the set {1, . . . , n, 1, . . . , n}, equipped with the obvious involution (·). Let AdSn be the
set of admissible subsets of [n, n], i.e., subsets S that contain at most one of i and i for each i ∈ [n]. Set
ei := −ei ∈ Rn, and for each S ∈ AdSn, set eS =

∑
a∈S ea.

Definition 1.1. A delta-matroid D is a collection F ⊂ AdSn of admissible sets of size n, called the feasible
sets of D, such that the polytope

P (D) := Conv{eB : B ∈ F}
has all edges parallel to ei or ei ± ej , for some i, j. We say that D is even if all edges of P (D) are parallel
to ei ± ej .

Delta-matroids were introduced in [7] by replacing the usual basis exchange axiom for matroids with
one involving symmetric difference. They were defined independently in [14, 17]. For the equivalence of
the definition of delta-matroids in those works with the one given above, and for general properties of
delta-matroids, see [6, Chapter 4].

A delta-matroid is even if and only if all sets in {B ∩ [n] : B ∈ F} have the same parity. Even delta-
matroids enjoy nicer properties than arbitrary delta-matroids. For instance, they satisfy a version of the
symmetric exchange axiom [32].

There are many constructions of delta-matroids in the literature. Two of the most fundamental come
from matroids: given a matroid M on [n], we can construct a delta-matroid on [n, n] whose feasible sets are
the sets of the form B ∪ Bc, for B a basis of M . We can also construct a delta-matroid whose feasible sets
are the sets of the form I ∪ Ic, for I independent in M . Additionally, there are delta-matroids corresponding
to graphs [18], graphs embedded in surfaces [15, 16], and points of a maximal orthogonal or symplectic
Grassmannian. Delta-matroids arising from points of a maximal orthogonal or symplectic Grassmannian are
called realizable. See [21, Section 6.2] for a discussion of delta-matroids associated to points of a maximal
orthogonal Grassmannian.

Given S, T ∈ AdSn, we define S t T = {a ∈ S ∪ T : a 6∈ S ∪ T}. A function g : AdSn → R is called
bisubmodular if, for all S, T ∈ AdSn,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S t T ).

There is a large literature on bisubmodular functions, beginning with [19]. They have been studied both from
an optimization perspective [23, 24] and from a polytopal perspective [22, 25]. Additionally, bisubmodular
functions are closely related to jump systems [11].
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For a delta-matroid D, define a function gD : AdSn → Z by

gD(S) = max
B∈F

(|S ∩B| − |S ∩B|).

We call gD the rank function of D. Note that gD may take negative values. The collection of feasible subsets
of D is exactly {S : gD(S) = n}, so D can be recovered from gD.

Theorem 1.2. A function g : AdSn → Z is the rank function of a delta-matroid if and only if

(1) g(∅) = 0 (normalization),
(2) |g(S)| ≤ 1 if |S| = 1 (boundedness),
(3) g(S) + g(T ) ≥ g(S ∩ T ) + g(S t T ) (bisubmodularity), and
(4) g(S) ≡ |S| (mod 2) (parity).

Furthermore, D is even if and only if

gD(S) =
gD(S ∪ i) + gD(S ∪ i)

2
whenever |S| = n− 1 and {i, i} ∩ S = ∅.

The function gD, as well as the observation that it is bisubmodular, has appeared before in the literature
[8, 14]. For example, in [8, Theorem 4.1] it is shown that, if D is represented by a point of the maximal
symplectic Grassmannian, then gD can be computed in terms of the rank of a certain matrix. It was known
that delta-matroids admit a description in terms of certain bisubmodular functions. However, the precise
characterization in Theorem 1.2 does not appear to have been known before. Indeed, Theorem 1.2 answers
a special case of [2, Question 9.4].

In [9, 10], Bouchet gave a rank-function axiomatization of delta-matroids in the more general setting of
multimatroids. His rank function differs from ours — in Section 2.2, we discuss the relationship between his
results and Theorem 1.2.

Basic operations operations on delta-matroids — like products, deletion, contraction, and projection —
can be simply expressed in terms of rank functions. See Section 2.1.

One of the most important invariants of a matroid M of rank r on [n] is its Whitney rank generating
function. If rkM is the rank function of M , then the rank generating function is defined as

RM (u, v) :=
∑
A⊂[n]

ur−rkM (A)v|A|−rkM (A).

The more commonly used normalization is the Tutte polynomial, which is RM (u− 1, v− 1). The characteri-
zation of delta-matroids in terms of rank functions allows us to consider an analogously-defined invariant.

Definition 1.3. Let D be a delta-matroid on [n, n]. Then we define

UD(u, v) =
∑

S∈AdSn

un−|S|v
|S|−gD(S)

2 .

Note that the bisubmodularity of gD implies that the restriction of gD to the subsets of any fixed S ∈ AdSn
is submodular. The boundedness of gD then implies that |gD(S)| ≤ |S|. Because of the parity requirement,
|S| − gD(S) is divisible by 2. Therefore UD(u, v) is indeed a polynomial. The normalization UD(u− 1, v− 1)
is more analogous to the Tutte polynomial, but it can have negative coefficients. However, the polynomial
UD(u, v − 1) has non-negative coefficients (as follows, e.g., from Proposition 3.1).

The U -polynomial of a delta-matroid was introduced by Eur, Fink, Spink, and the author in [21, Definition
1.4] in terms of a Tutte polynomial-like recursion; see Proposition 3.1 for a proof that Definition 1.3 agrees
with the recursive definition considered there. The specialization UD(0, v) is the interlace polynomial of D,
which was introduced in [3] for graphs and in [13] for general delta-matroids. See [29] for a survey on the
properties of the interlace polynomial.
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Various Tutte polynomial-like invariants of delta-matroids have been considered in the literature, such
as the Bollobás–Riordan polynomial and its specializations [5]. In [27], a detailed analysis of delta-matroid

polynomials which satisfy a deletion-contraction formula is carried out. Set σD(A) = |A|
2 + gD(A)+gD(Ā)

4 for
A ⊂ [n]. Then in [27], the polynomial∑

A⊂[n]

(x− 1)σD([n])−σD(A)(y − 1)|A|−σD(A)

is shown to be, in an appropriate sense, the universal invariant of delta-matroids which satisfies a deletion-
contraction formula. This polynomial is a specialization of the Bollobás–Riordan polynomial. In [20], it is
shown that this polynomial has several nice combinatorial properties.

Example 1.4. [21, Example 5.5 and 5.6] Let M be a matroid of rank r on [n], and let S = S+∪S− ∈ AdSn
be an admissible set with S+, S− ⊂ [n]. Set V = {i ∈ [n] : S ∩ {i, ī} = ∅}. Above, we gave two examples of
delta-matroids constructed from M .

(1) Let D be the delta-matroid arising from the independent sets of M . Then gD(S) = |S|+2 rkM (S+)−
2|S+|, and

UD(u, v) = (u+ 1)n−rRM

(
u+ 3,

2u+ v + 2

u+ 1

)
.

(2) Let D be the delta-matroid arising from the bases of M . Then gD(S) = |S| − 2r+ 2 rkM (S+ ∪ V )−
2|S+|+ 2 rkM (S+), and

UD(u, v) =
∑

T⊂S⊂[n]

u|S\T |vr−rkM (S)+|T |−rkM (T ).

We study the U -polynomial as a delta-matroid analogue of the rank generating function of a matroid.
For a matroid M , the evaluation RM (u, 0) is essentially the f -vector of the independence complex of the
matroid, i.e., it counts the number of independent sets of M of a given size.

A set S ∈ AdSn is independent if it is contained in a feasible set of a delta-matroid D. In [9], Bouchet
gave an axiomatization of delta-matroids in terms of their independent sets. The independent sets form
a simplicial complex, called the independence complex of D. We relate UD(u, 0) to the f -vector of the
independence complex of D (Proposition 3.4), which gives linear inequalities between the coefficients of
UD(u, 0).

Following a tradition in matroid theory (see, e.g., [28]), and inspired by the ultra log-concavity of RM (u, 0)
[1, 12], we make three log-concavity conjectures for UD(u, 0). These conjectures state the sequence of the
number of independent sets of a delta-matroid of a given size satisfies log-concavity properties.

Conjecture 1.5. Let D be a delta-matroid on [n, n], and let UD(u, 0) = an + an−1u+ · · ·+ a0u
n. Then, for

any k ∈ {1, . . . , n− 1},
(1) a2

k ≥ n−k+1
n−k ak+1ak−1,

(2) a2
k ≥ 2n−k+1

2n−k
k+1
k ak+1ak−1, and

(3) a2
k ≥ n−k+1

n−k
k+1
k ak+1ak−1.

Conjecture 1.5(1) follows from [21, Conjecture 1.5], and it is proven in [21, Theorem B] when D has an
enveloping matroid (see Definition 3.8). This is a technical condition which is satisfied by many commonly
occurring delta-matroids, including all realizable delta-matroids and delta-matroids arising from matroids
(although not all delta-matroids, see [9, Section 4] and [21, Example 6.11]). The proof uses algebro-geometric
methods. Here we prove a special case of Conjecture 1.5(2).
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Theorem 1.6. Let D be a delta-matroid on [n, n] which has an enveloping matroid. Let UD(u, 0) = an +
an−1u + · · · + a0u

n. Then, for any k ∈ {1, . . . , n − 1}, a2
k ≥ 2n−k+1

2n−k
k+1
k ak+1ak−1, i.e., Conjecture 1.5(2)

holds.

Our argument uses the theory of Lorentzian polynomials [12]. We strengthen Theorem 1.6 by proving
that a generating function for the independent sets of D is Lorentzian (Theorem 3.11), which implies the
desired log-concavity statement. We deduce that this generating function is Lorentzian from the fact that
the Potts model partition function of an enveloping matroid is Lorentzian [12, Theorem 4.10].

When D is the delta-matroid arising from the independent sets of a matroid, Conjecture 1.5(3) follows
from the ultra log-concavity of the number of independent sets of that matroid [1,12]. When D is the delta-
matroid arising from the bases of a matroid M on [n], which has an enveloping matroid by [21, Proposition
6.10], Theorem 1.6 gives a new log-concavity result. If we set

ak = |{T ⊂ S ⊂ [n] : T independent in M and S spanning in M , |S \ T | = n− k}|,

then Theorem 1.6 gives that a2
k ≥ 2n−k+1

2n−k
k+1
k ak+1ak−1 for k ∈ {1, . . . , n− 1}.

Acknowledgements: We thank Nima Anari, Christopher Eur, Satoru Fujishige, and Steven Noble for
enlightening conversations, and we thank Christopher Eur, Steven Noble, and Shiyue Li for helpful comments
on a previous version of this paper. The author is supported by an NDSEG fellowship.

2. Rank functions of delta-matroids

The proof of Theorem 1.2 goes by way of a polytopal description of normalized bisubmodular functions,
which we now recall. To a function f : AdSn → R with f(∅) = 0, we associate the polytope

P (f) = {x : 〈eS , x〉 ≤ f(S) for all non-empty S ∈ AdSn}.

By [11, Theorem 4.5] (or [2, Theorem 5.2]), P (f) has all edges parallel to ei or ei ± ej if and only if f is
bisubmodular. In this case, P (f) is a lattice polytope if and only if f is integer-valued. For a normalized
(i.e., f(∅) = 0) bisubmodular function f , we can recover f from P (f) via the formula

f(S) = max
x∈P (f)

〈eS , x〉.

Under this dictionary, the bisubmodular function corresponding to the dilate kP (f) is kf , and the bisub-
modular function corresponding to the Minkowski sum P (f) + P (g) is f + g.

Proof of Theorem 1.2. By the polyhedral description of normalized bisubmodular functions, for each delta-
matroid D there is a unique normalized bisubmodular function g such that P (D) = P (g). We show that
the conditions on a normalized bisubmodular function g for P (g) to have all vertices in {−1, 1}n are exactly
those given in Theorem 1.2, namely that |g(S)| ≤ 1 when |S| = 1 and g(S) ≡ |S| (mod 2).

The polytope P (g) has all vertices in {±1}n if and only if 1
2 (P (g) + (1, . . . , 1)) is a lattice polytope which

is contained in [0, 1]n. The normalized bisubmodular function h corresponding to the point (1, . . . , 1) takes

value h(S) = |S+| − |S−| on an admissible set of the form S = S+ ∪ S−, with S+, S− ⊂ [n]. The polytope
1
2 (P (g) + (1, . . . , 1)) is P (f), where f is the normalized bisubmodular function defined by f := 1

2 (g+h). We
note that P (f) is a lattice polytope which is contained in [0, 1]n if and only if

(1) f(i) ∈ {0, 1} and f(i) ∈ {−1, 0}, and
(2) f is integer-valued.

A normalized bisubmodular function f satisfies these conditions if and only if g satisfies the conditions of
Theorem 1.2, giving the characterization of rank functions of delta-matroids.
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By [2, Example 5.2.3], the polytope P (gD) = P (D) has all edges parallel to ei ± ej if and only if gD
satisfies the condition

gD(S) =
gD(S ∪ i) + gD(S ∪ i)

2
whenever |S| = n− 1 and {i, i} ∩ S = ∅.

This gives the characterization of even delta-matroids. �

2.1. Compatibility with delta-matroid operations. In this section, we consider several operations on
delta-matroids, and we show that the rank function behaves in a simple way under these operations. First
we consider minor operations on delta-matroids — contraction, deletion, and projection.

Definition 2.1. Let D be a delta-matroid on [n, n] with feasible sets F , and let i ∈ [n]. We say that i is a
loop of D if no feasible set contains i, and we say that i is a coloop if every feasible set contains i.

(1) If i is not a loop of D, then the contraction D/i is the delta-matroid with feasible sets B \ i, for
B ∈ F containing i.

(2) If i is not a coloop of D, then the deletion D \ i is the delta-matroid with feasible sets B \ i, for
B ∈ F containing i.

(3) The projection D(i) is the delta-matroid with feasible sets B \ {i, i} for B ∈ F .
(4) If i is a loop or coloop, then set D/i = D \ i = D(i).

For A ⊂ [n], we define D/A,D \ A, and D(A) to be the delta-matroids on [n, n̄] \ (A ∪ Ā) obtained by
successively contracting, deleting, or projecting away from all elements of A. Contractions, deletions, and
projections at disjoint sets commute with each other, so this is well defined. If A and B are disjoint subsets
of [n], then D/A \B is the delta-matroid obtained by contracting A and then deleting B, which is the same
as first deleting B and then contracting A.

First we describe the rank function of projections. The formula is analogous to the formula for the rank
function of a matroid deletion.

Proposition 2.2. Let D be a delta-matroid on [n, n], and let A ⊂ [n]. For each S ∈ AdSn disjoint from
A ∪A, gD(A)(S) = gD(S).

Proof. As S is disjoint from A∪A, |B ∩S| − |B ∩S| depends only on B \ (A∪A). The feasible sets of D(A)
are given by B \ (A ∪A) for B a feasible set of D. �

The rank functions of the contractions and deletions are described by the following result. The formula
is analogous to the formula for the rank function of a matroid contraction.

Proposition 2.3. Let D be a delta-matroid on [n, n]. Let A,B ⊂ [n] be disjoint subsets, and let S ∈ AdSn
be disjoint from A ∪B ∪A ∪B. Then gD/A\B(S) = gD(S ∪A ∪B)− gD(A ∪B).

Before proving this, we will need the following property of delta-matroids. It follows, for instance, from
the greedy algorithm description of delta-matroids in [11].

Proposition 2.4. Let D be a delta-matroid on [n, n], and let S ⊂ T ∈ AdSn. Let FS be the collection of
feasible sets B of D that maximize |S ∩B|, i.e., have |S ∩B| = maxB′∈F |S ∩B′|. Then

max
B∈FS

|T ∩B| = max
B∈F

|T ∩B|.

First we consider the case when we delete or contract a single element.

Lemma 2.5. Let D be a delta-matroid on [n, n], and let i ∈ [n]. Then

(1) If i is not a loop, then gD/i(S) = gD(S ∪ i)− 1,

(2) If i is not a coloop, then gD\i(S) = gD(S ∪ i)− 1, and



6 MATT LARSON

Proof. We do the case of contraction; the case of deletion is identical. Assume that i is not a loop, and let
Fi denote the set of feasible sets in D which contain i. Note that Fi is non-empty, so it is the collection of
feasible sets B of D which maximize |{i} ∩B|. For any S ∈ AdSn with S ∩ {i, i} = ∅, by Proposition 2.4 we
have that

max
B∈F

|(S ∪ i) ∩B| = max
B∈Fi

|(S ∪ i) ∩B|.

For any B, |(S ∪ i) ∩B| − |(S ∪ i) ∩B| = 2|(S ∪ i) ∩B| − |S ∪ i|, so we see that

max
B∈F

(|(S ∪ i) ∩B| − |(S ∪ i) ∩B|) = max
B∈Fi

(|(S ∪ i) ∩B| − |(S ∪ i) ∩B|).

The left-hand side is equal to gD(S ∪ i), and the right-hand side is equal to gD/i(S) + 1. �

Proof of Proposition 2.3. First note that gD(i) = 1 if i is not a loop and is −1 if i is a loop, and similarly
gD(i) = 1 if i is not a coloop and is −1 is i is a coloop. So Lemma 2.5 implies the result holds when |S| = 1.

We induct on the size of A∪B. We consider the case of adding an element i ∈ [n] to A; the case of adding
it to B is identical. We compute:

gD/(A∪i)\B(S) = gD/A\B(S ∪ i)− gD/A\B(i)

= gD(S ∪A ∪B ∪ i)− gD(A ∪B)− (gD(A ∪B ∪ i)− gD(A ∪B))

= gD(S ∪ (A ∪ i) ∪B)− gD((A ∪ i) ∪B). �

For two non-negative integers n1, n2, identify the disjoint union of [n1] and [n2] with [n1 +n2]. Given two
delta-matroids D1, D2 on [n1] and [n2], let D1×D2 be the delta-matroid on [n1 +n2] whose feasible sets are
B1 ∪B2, for Bi a feasible set of Di. Then we have the following description of the rank function of D1×D2.

Proposition 2.6. Let D1, D2 be delta-matroids on [n1] and [n2], and let S = S1∪S2 be an admissible subset
of [n1 + n2, n1 + n2], with S1 ⊂ [n1, n1] and S2 ⊂ [n2, n2]. Then gD1×D2(S) = gD1(S1) + gD2(S2).

Proof. Let B1 be a feasible set of D1 with gD1(S1) = |S1 ∩ B1| − |S1 ∩ B1|, and let D2 be a feasible set
of D2 with gD2(S2) = |S2 ∩ B2| − |S2 ∩ B2|. Then B1 ∪ B2 maximizes B 7→ |S ∩ B| − |S ∩ B|, and so
gD1×D2(S) = |S1 ∩B1| − |S1 ∩B1|+ |S2 ∩B2| − |S2 ∩B2| = gD1(S1) + gD2(S2). �

We now study how the rank functions behave under the operation of twisting. Let W be the signed
permutation group, the subgroup of the symmetric group on [n, n] which preserves AdSn. In other words,

W consists of permutations w such that w(i) = w(i). As delta-matroids are collections of admissible sets,
W acts on the set of delta-matroids on [n, n̄]. This action is usually called twisting in the delta-matroid
literature.

Proposition 2.7. Let D be a delta-matroid on [n, n], and let w ∈W . Then gw·D(S) = gD(w−1 · S).

Proof. Note that, for B a feasible set of D, |S ∩ (w ·D)| − |S ∩ (w ·D)| = |(w−1 · S) ∩D| − |(w−1 · S) ∩D|,
which implies the result. �

Let S ∈ AdSn be an admissible set of size n. For any delta-matroid D on [n, n], let r be the maximal
value of |S ∩ B|. Then {S ∩ B : B ∈ F , |S ∩ B| = r} is the set of bases of a matroid on S. When S = [n],
this is sometimes called the upper matroid of D. We describe the rank function of this matroid in terms of
the rank function of D.

Proposition 2.8. Let S ∈ AdSn be an admissible set of size n, and let D be a delta-matroid on [n, n] with
r = maxB∈F |S ∩B|. The matroid M on S whose bases are {S ∩B : B ∈ F , |S ∩B| = r} has rank function

rkM (T ) =
gD(T ) + |T |

2
.
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Proof. Let FS be the collection of feasible sets B with |S ∩B| = r. Then we have that

rkM (T ) = max
B∈FS

|T ∩B| ≤ max
B∈F

|T ∩B| = gD(T ) + |T |
2

.

On the other hand, by Proposition 2.4 there is a feasible set B which maximizes |T ∩B| and has |S∩B| = r,
so we have equality. �

2.2. An alternative normalization. The results of the previous section, particularly Proposition 2.8,
suggest that an alternative normalization of the rank function of a delta-matroid has nice properties. Set

hD(S) :=
gD(S) + |S|

2
.

The function hD(S) is integer-valued and bisubmodular, and the polytope it defines is P (hD) = 1
2 (P (D)+�),

where � = [−1, 1]n is the cube. This is because the bisubmodular function corresponding to � is S 7→ |S|.
Note that the function hD is non-negative and increasing, in the sense that if S ⊂ T ∈ AdSn, then hD(S) ≤
hD(T ). Theorem 1.2 implies the following characterization of the functions arising as hD for some delta-
matroid D.

Corollary 2.9. A function h : AdSn → Z is equal to hD for some delta-matroid D if and only if

(1) h(∅) = 0 (normalization),
(2) h(S) ∈ {0, 1} if |S| = 1 (boundedness),
(3) h(S) + h(T ) ≥ h(S ∩ T ) + h(S t T ) + |S ∩ T |/2.

Indeed, these are exactly the conditions we need for g(S) := 2h(S) − |S| to satisfy the conditions in
Theorem 1.2.

The function hD was studied by Bouchet in [9, 10] in the more general setting of multimatroids. The
following characterization of the functions hD follows from [9, Proposition 4.2]:

Proposition 2.10. A function h : AdSn → Z is equal to hD for some delta-matroid D if and only if

(1) h(∅) = 0,
(2) h(S) ≤ h(S ∪ a) ≤ h(S) + 1 if S ∪ a is admissible,
(3) h(S) + h(T ) ≥ h(S ∩ T ) + h(S ∪ T ) if S ∪ T is admissible, and
(4) h(S ∪ i) + h(S ∪ ī) ≥ 2h(S) + 1 if S ∩ {i, ī} = ∅.

In [10, Theorem 2.16], a third characterizations of the functions hD is stated with a reference to an
unpublished paper of Allys.

3. The U-polynomial

We now study the U -polynomial of delta-matroids. We prove the following recursion for UD(u, v), which
was the original definition of the U -polynomial in [21, Definition 1.4].

Proposition 3.1. If n = 0, the UD(u, v) = 1. For any i ∈ [n], the U -polynomial satisfies

UD(u, v) =

{
UD/i(u, v) + UD\i(u, v) + uUD(i)(u, v), i is neither a loop nor a coloop

(u+ v + 1) · UD\i(u, v), i is a loop or a coloop.

First we study the behavior of the U -polynomial under products.

Lemma 3.2. Let D1, D2 be delta-matroids on [n1, n1] and [n2, n2]. Then UD1×D2
(u, v) = UD1

(u, v)UD2
(u, v).



8 MATT LARSON

Proof. We compute:

UD1
(u, v)UD2

(u, v) =

 ∑
S1∈AdSn1

un1−|S1|v
|S1|−gD1

(S1)

2

 ∑
S2∈AdSn2

un2−|S2|v
|S2|−gD2

(S2)

2


=

∑
(S1,S2)

un1+n2−|S1|−|S2|v
|S1|+|S2|−gD1

(S1)−gD2
(S2)

2

=
∑

(S1,S2)

un1+n2−|S1|−|S2|v
|S1|+|S2|−gD1×D2

(S1∪S2)

2

= UD1×D2
(u, v),

where the third equality is Proposition 2.6. �

Proof of Proposition 3.1. If n = 0, then the only admissible subset of [n, n] is the empty set, and gD(∅) = 0,
so UD(u, v) = 1. Now choose some i ∈ [n].

First suppose that i is neither a loop nor a coloop. The admissible subsets of [n, n] are partitioned into sets

containing i, sets containing i, and sets containing neither i nor i. If S contains i, then un−|S|v
|S|−gD(S)

2 =

un−1−|S\i|v
|S\i|−gD/i(S\i)

2 . If S contains i, then un−|S|v
|S|−gD(S)

2 = un−1−|S\i|v
|S\i|−gD\i(S\i)

2 . If S contains

neither i not i, then un−|S|v
|S|−gD(S)

2 = u · un−1−|S|v
|S|−gD(i)(S)

2 . Adding these up implies the recursion in
this case.

If i is a loop or a coloop, then D is the product of D \ i with a delta-matroid on 1 element with 1 feasible
set. We observe that U -polynomial of a delta-matroid on 1 element with 1 feasible set is u + v + 1, and so
Lemma 3.2 implies the recursion in this case. �

3.1. The independence complex of a delta-matroid. In this section, we introduce the independence
complex of a delta-matroid and use it to study the U -polynomial.

Definition 3.3. We say that S ∈ AdSn is independent in D if gD(S) = |S|, or, equivalently, if S is contained
in a feasible subset of D. The independence complex of D is the simplicial complex on [n, n] whose facets
are given by the feasible sets of D.

Let S ∈ AdSn, and let T = {i ∈ [n] : S ∩ {i, i} = ∅}. Note S is independent if and only if S is a feasible
set of D(T ).
The following result is immediate from the definition of UD(u, 0).

Proposition 3.4. Let fi(D) be the number of i-dimensional faces of the independence complex of D. Then
UD(u, 0) = fn−1(D) + fn−2(D)u+ · · ·+ f−1(D)un.

Note that the f -vector of a pure simplicial complex, like the independence complex of a delta-matroid, is
a pure O-sequence. Then [26] gives the following inequalities.

Corollary 3.5. Let UD(u, 0) = an+an−1u+ · · · a0u
n. Then (a0, . . . , an) is the f -vector of a pure simplicial

complex. In particular, ai ≤ an−i for i ≤ n/2 and a0 ≤ a1 ≤ · · · ≤ abn+1
2 c

.

Proposition 3.4 is a delta-matroid analogue of the fact that, for a matroid M , the coefficients of RM (u, 0),
when written backwards, are the face numbers of the independence complex ofM . The independence complex
of a matroid is shellable [4], which is reflected in the fact that RM (u−1, 0) has non-negative coefficients. The
independence complex of a delta-matroid is not in general shellable or Cohen–Macaulay, and UD(u − 1, 0)
can have negative coefficients.
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Recall that � = [−1, 1]n is the cube. The map S 7→ eS induces a bijection between AdSn and lattice
points of �. We use this to give a polytopal description of the independent sets of D, which will be useful in
the sequel.

Proposition 3.6. The map S 7→ eS induces a bijection between independent sets of D and lattice points in
1
2 (P (D) + �).

Proof. If S is independent in D, then there is T ∈ AdSn such that S ∪ T ∈ F . Then eS = 1
2 (eS∪T + eS∪T ),

so eS lies in 1
2 (P (D) + �).

The correspondence between normalized bisubmodular functions and polytopes gives that

1

2
(P (D) + �) =

{
x : 〈eS , x〉 ≤

gD(S) + |S|
2

}
.

If S is not independent, then eS violates the inequality 〈eS , eS〉 ≤ gD(S)+|S|
2 , so eS does not lie in 1

2 (P (D) +
�). �

Remark 3.7. Let UD(u,−1) = bn + bn−1u + · · · + b0u
n. In small examples, (b0, . . . , bn) is the f -vector a

pure simplicial complex of dimension (n − 1). When M is a matroid, the coefficients of RM (u,−1), when
written backwards, are the f -vector of the broken circuit complex of M . This suggests that (b0, . . . , bn) may
be the f -vector of a delta-matroid analogue of the broken circuit complex, and, more generally, that there
is an “activity” interpretation of the coefficients of UD(u, v − 1). See [30, Corollary 5.3] for an enumerative
interpretation of bn.

3.2. Enveloping matroids. We now recall the definition of an enveloping matroid of a delta-matroid, which
was introduced for algebro-geometric reasons in [21, Section 6]. A closely related notion was considered in
[9].

For S ⊆ [n, n̄], let uS denote the corresponding indicator vector in R[n,n̄]. For a matroid M on [n, n̄], let
P (M) = Conv{uB : B basis of M}, and let IP (M) = Conv{uS : S independent in M}.

Definition 3.8. Let env : R[n,n] → Rn be the map given by (x1, . . . , xn, x1, . . . , xn) 7→ (x1−x1, . . . , xn−xn).
Let D be a delta-matroid on [n, n], and let M be a matroid on [n, n]. We say that M is an enveloping matroid
for D if env(P (M)) = P (D).

Note that enveloping matroids necessarily have rank n. In [21, Section 6.3], it is shown that many different
types of delta-matroids have enveloping matroids, such as realizable delta-matroids, delta-matroids arising
from the independent sets or bases of a matroid, and delta-matroids associated to graphs or embedded
graphs. We will need the following property of enveloping matroids.

Proposition 3.9. Let M be an enveloping matroid for a delta-matroid D on [n, n]. Let S ∈ AdSn be an
admissible set. Then S is independent in M if and only if it is independent in D.

Proof. If S ∈ AdSn, then env(uS) = eS , and S is the only admissible set with this property. Furthermore, if
S ∈ AdSn has size n, then uS is the only indicator vector of a subset of [n, n̄] of size n which is a preimage
eS under env. Because env(P (M)) = P (D), we see that if B is a feasible set of D, then B is a basis for M .
This implies that the independent sets in D are independent in M .

By [21, Lemma 7.6], env(IP (M)) = 1
2 (P (D) + �). If S is admissible and independent in M , then

env(uS) = eS ∈ 1
2 (P (D) + �), so by Proposition 3.6, S is independent in D. �

3.3. Lorentzian polynomials. For a multi-index m = (m0,m1, . . . ), let wm = wm0
0 wm1

1 · · · . A homoge-
neous polynomial f(w0, w1, . . . ) of degree d with real coefficients is said to be strictly Lorentzian if all its
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coefficients are positive, and the quadratic form obtained by taking d − 2 partial derivatives is nondegen-
erate with exactly one positive eigenvalue. We say that f is Lorentzian if it is a coefficient-wise limit of
strictly Lorentzian polynomials. Lorentzian polynomials enjoy strong log-concavity properties, and the class
of Lorentzian polynomials is preserved under many natural operations.

The following lemma is a special case of [31, Proposition 3.3]. Alternatively, it can be deduced from the
proof of [12, Corollary 3.5]. We thank Nima Anari for discussing this lemma with us.

Lemma 3.10. For a polynomial f(w0, w1, . . . ) =
∑

m cmw
m, let

f(w0, w1, . . . ) =
∑

m:mi≤1 for i6=0

cmw
m.

If f is Lorentzian, then f is Lorentzian.

For S ∈ AdSn, let S ⊂ [n] denote the unsigned version of S, i.e., the image of S under the quotient of
[n, n] by the involution. For a set T , let wT =

∏
a∈T wa. We now state a strengthening of Theorem 1.6.

Theorem 3.11. Let D be a delta-matroid on [n, n] which has an enveloping matroid. Then the polynomial∑
S independent in D

w
2n−|S|
0 wS ∈ R[w0, w1, . . . , wn]

is Lorentzian.

Remark 3.12. In [21, Theorem 8.1], it is proven that if D has an enveloping matroid, then the polynomial∑
S independent in D

w
|S|
0

|S|!
w[n]\S ∈ R[w0, w1, . . . , wn]

is Lorentzian.

Proof of Theorem 1.6. By [12, Theorem 2.10], the specialization∑
S independent in D

w
2n−|S|
0 y|S| =

n∑
i=0

fi−1(D)w2n−i
0 yi

is Lorentzian. By [12, Example 2.26], the coefficients of a Lorentzian polynomial in two variables of degree
2n are log-concave after dividing the coefficient of w2n−i

0 yi by
(

2n
i

)
, which implies the result. �

Proof of Theorem 3.11. Let M be an enveloping matroid of D. By [12, Proof of Theorem 4.14], the polyno-
mial ∑

S independent in M

w
2n−|S|
0 wS ∈ R[w0, w1, . . . , wn, w1, . . . , wn]

is Lorentzian. Setting wi = wi, by [12, Theorem 2.10] the polynomial∑
S independent in M

w
2n−|S|
0 wS∩[n]wS∩[n] ∈ R[w0, w1, . . . , wn]

is Lorentzian. A term w
2n−|S|
0 wS∩[n]wS∩[n] has degree at most 1 in each of the variables w1, . . . , wn if and

only if S is admissible, in which case it is equal to wS . Therefore, by Lemma 3.10, the polynomial∑
S∈AdSn independent in M

w
2n−|S|
0 wS ∈ R[w0, w1, . . . , wn]

is Lorentzian. By Proposition 3.9, this polynomial is equal to the polynomial in Theorem 3.11. �
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Remark 3.13. Let (U,Ω, r) be a multimatroid [9], i.e., U is a finite set, Ω is a partition of U , and r is a
function on partial transversals of Ω satisfying certain conditions. An independent set is a partial transversal
S of Ω with r(S) = |S|. A multimatroid is called shelterable if r can be extended to the rank function of a
matroid on U . Then the argument used to prove Theorem 1.6 shows that, if ak is the number of independent
sets of a shelterable multimatroid of size k, then

a2
k ≥
|U | − k + 1

|U | − k
k + 1

k
ak+1ak−1.
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