RANK FUNCTIONS AND INVARIANTS OF DELTA-MATROIDS

MATT LARSON

ABSTRACT. In this note, we give a rank function axiomatization for delta-matroids and study the corre-
sponding rank generating function. We relate an evaluation of the rank generating function to the number
of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the
theory of Lorentzian polynomials.

1. INTRODUCTION

Let [n,7] denote the set {1,...,n,1,...,7}, equipped with the obvious involution (-). Let AdS,, be the
set of admissible subsets of [n,7], i.e., subsets S that contain at most one of i and i for each i € [n]. Set
e; ;= —e; € R", and for each S € AdS,,, set es =) g €a-

Definition 1.1. A delta-matroid D is a collection F C AdS,, of admissible sets of size n, called the feasible
sets of D, such that the polytope

P(D) := Conv{ep : B € F}
has all edges parallel to e; or e; & e;, for some ¢, j. We say that D is even if all edges of P(D) are parallel
to e; L e;.

Delta-matroids were introduced in [7] by replacing the usual basis exchange axiom for matroids with
one involving symmetric difference. They were defined independently in [14,/17]. For the equivalence of
the definition of delta-matroids in those works with the one given above, and for general properties of
delta-matroids, see [6, Chapter 4].

A delta-matroid is even if and only if all sets in {B N [n] : B € F} have the same parity. Even delta-
matroids enjoy nicer properties than arbitrary delta-matroids. For instance, they satisfy a version of the
symmetric exchange axiom [32].

There are many constructions of delta-matroids in the literature. Two of the most fundamental come
from matroids: given a matroid M on [n], we can construct a delta-matroid on [n, 7] whose feasible sets are
the sets of the form B U B¢, for B a basis of M. We can also construct a delta-matroid whose feasible sets
are the sets of the form I UI¢, for I independent in M. Additionally, there are delta-matroids corresponding
to graphs [18], graphs embedded in surfaces [15,/16], and points of a maximal orthogonal or symplectic
Grassmannian. Delta-matroids arising from points of a maximal orthogonal or symplectic Grassmannian are
called realizable. See |21}, Section 6.2] for a discussion of delta-matroids associated to points of a maximal
orthogonal Grassmannian.

Given S,T € AdS,, we define SUT = {a € SUT:a ¢ SUT}. A function g: AdS,, — R is called
bisubmodular if, for all S,T € AdS,,,

fS)+ H(T) =z F(SNT) + f(SUT).

There is a large literature on bisubmodular functions, beginning with [19]. They have been studied both from
an optimization perspective [23[24] and from a polytopal perspective [22}25]. Additionally, bisubmodular
functions are closely related to jump systems [11].
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For a delta-matroid D, define a function gp: AdS,, — Z by
= B| —|Sn BJ).
9p(5) = max(|SNB| - |5NBJ)

We call gp the rank function of D. Note that gp may take negative values. The collection of feasible subsets
of D is exactly {S : gp(S) = n}, so D can be recovered from gp.

Theorem 1.2. A function g: AdS,, — 7Z is the rank function of a delta-matroid if and only if
(1) g(®) =0 (normalization),
(2) 1g(S)| <1if|S| =1 (boundedness),
(3) g(S)+g(T)>g(SNT)+g(SUT) (bisubmodularity), and
(4) 9(5) = IS| (mod 2) (parity).

Furthermore, D is even if and only if

The function gp, as well as the observation that it is bisubmodular, has appeared before in the literature
[8,/14]. For example, in [8, Theorem 4.1] it is shown that, if D is represented by a point of the maximal
symplectic Grassmannian, then gp can be computed in terms of the rank of a certain matrix. It was known
that delta-matroids admit a description in terms of certain bisubmodular functions. However, the precise
characterization in Theorem does not appear to have been known before. Indeed, Theorem 1.2 answers
a special case of |2, Question 9.4].

In [9,/10], Bouchet gave a rank-function axiomatization of delta-matroids in the more general setting of
multimatroids. His rank function differs from ours — in Section we discuss the relationship between his
results and Theorem

Basic operations operations on delta-matroids — like products, deletion, contraction, and projection —
can be simply expressed in terms of rank functions. See Section [2.1

One of the most important invariants of a matroid M of rank r on [n] is its Whitney rank generating
function. If rky, is the rank function of M, then the rank generating function is defined as

Ry (u,v) == Z " TR (A) Al —rkar (4)
AC([n]

whenever |S| =n—1 and {i,i} NS = 0.

The more commonly used normalization is the Tutte polynomial, which is Rp;(u — 1,v — 1). The characteri-
zation of delta-matroids in terms of rank functions allows us to consider an analogously-defined invariant.

Definition 1.3. Let D be a delta-matroid on [n,71]. Then we define

g 18I=9p(®)
Up(u,v) = g u ISy T
SeAdsS,

Note that the bisubmodularity of gp implies that the restriction of gp to the subsets of any fixed S € AdS,,
is submodular. The boundedness of gp then implies that |gp(S)| < |S|. Because of the parity requirement,
|S| — gp(S) is divisible by 2. Therefore Up(u,v) is indeed a polynomial. The normalization Up(u—1,v —1)
is more analogous to the Tutte polynomial, but it can have negative coefficients. However, the polynomial
Up(u,v — 1) has non-negative coefficients (as follows, e.g., from Proposition [3.1]).

The U-polynomial of a delta-matroid was introduced by Eur, Fink, Spink, and the author in [21, Definition
1.4] in terms of a Tutte polynomial-like recursion; see Proposition for a proof that Definition agrees
with the recursive definition considered there. The specialization Up(0,v) is the interlace polynomial of D,
which was introduced in [3] for graphs and in [13] for general delta-matroids. See [29] for a survey on the
properties of the interlace polynomial.
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Various Tutte polynomial-like invariants of delta-matroids have been considered in the literature, such
as the Bollobds—Riordan polynomial and its specializations [5]. In [27], a detailed analysis of delta-matroid
polynomials which satisfy a deletion-contraction formula is carried out. Set op(A4) = % + w for
A C [n]. Then in [27], the polynomial

Z (LE _ 1)‘7D(["])*0D(A) (y _ 1)‘A|70‘D(A)
AC([n]

is shown to be, in an appropriate sense, the universal invariant of delta-matroids which satisfies a deletion-
contraction formula. This polynomial is a specialization of the Bollobds—Riordan polynomial. In [20], it is
shown that this polynomial has several nice combinatorial properties.

Example 1.4. [21, Example 5.5 and 5.6] Let M be a matroid of rank r on [n], and let S = STUS— € AdS,
be an admissible set with ST,5~ C [n]. Set V = {i € [n] : SN {i,i} = 0}. Above, we gave two examples of
delta-matroids constructed from M.
(1) Let D be the delta-matroid arising from the independent sets of M. Then gp(S) = |S|+2rky (ST)—
2|S*|, and
Up(u,v) = (u+1)"""Ry (u + 3, 2u—|—v+2) .
u—+1

(2) Let D be the delta-matroid arising from the bases of M. Then gp(S) = |S| —2r + 21k (STUV) —
2|S*| + 2rkps (ST), and

Up(u,v) = S wl$\Tlyr—rkar (4TI —rieas (T),

TCSC[n]

We study the U-polynomial as a delta-matroid analogue of the rank generating function of a matroid.
For a matroid M, the evaluation Rj(u,0) is essentially the f-vector of the independence complex of the
matroid, i.e., it counts the number of independent sets of M of a given size.

A set S € AdS,, is independent if it is contained in a feasible set of a delta-matroid D. In [9], Bouchet
gave an axiomatization of delta-matroids in terms of their independent sets. The independent sets form
a simplicial complex, called the independence complex of D. We relate Up(u,0) to the f-vector of the
independence complex of D (Proposition , which gives linear inequalities between the coefficients of
UD (u7 0).

Following a tradition in matroid theory (see, e.g., [28]), and inspired by the ultra log-concavity of Rys(u,0)
[1,/12], we make three log-concavity conjectures for Up(u,0). These conjectures state the sequence of the
number of independent sets of a delta-matroid of a given size satisfies log-concavity properties.

Conjecture 1.5. Let D be a delta-matroid on [n,7], and let Up(u,0) = ap + an—1u+- -+ agu™. Then, for
any ke {1,...,n—1},

2 < n—k+l
(1) ai > “EHay ap—1,
2 < 2n—k+1 k+1
(2) aj > 2= gy ag_q, and
2 < n—k+l kil
(3) ai > "2 5k ak-1

Conjecture 1) follows from |21, Conjecture 1.5], and it is proven in |21, Theorem B] when D has an
enveloping matroid (see Definition . This is a technical condition which is satisfied by many commonly
occurring delta-matroids, including all realizable delta-matroids and delta-matroids arising from matroids
(although not all delta-matroids, see [9, Section 4] and |21, Example 6.11]). The proof uses algebro-geometric
methods. Here we prove a special case of Conjecture [L.5{2).
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Theorem 1.6. Let D be a delta-matroid on [n,T] which has an enveloping matroid. Let Up(u,0) = a,, +
An—1u + -+ agu™. Then, for any k € {1,...,n — 1}, a3 > %%ak+lak71, i.e., Conjecture (2)
holds.

Our argument uses the theory of Lorentzian polynomials [12]. We strengthen Theorem by proving
that a generating function for the independent sets of D is Lorentzian (Theorem , which implies the
desired log-concavity statement. We deduce that this generating function is Lorentzian from the fact that
the Potts model partition function of an enveloping matroid is Lorentzian [12, Theorem 4.10].

When D is the delta-matroid arising from the independent sets of a matroid, Conjecture (3) follows
from the ultra log-concavity of the number of independent sets of that matroid [1,/12]. When D is the delta-
matroid arising from the bases of a matroid M on [n], which has an enveloping matroid by [21, Proposition
6.10], Theorem gives a new log-concavity result. If we set

ar = {T C S C [n] : T independent in M and S spanning in M, |[S\T|=n —k}|,

then Theorem gives that a3 > %%akﬂak,l for ke {l,...,n—1}.

Acknowledgements: We thank Nima Anari, Christopher Eur, Satoru Fujishige, and Steven Noble for
enlightening conversations, and we thank Christopher Eur, Steven Noble, and Shiyue Li for helpful comments
on a previous version of this paper. The author is supported by an NDSEG fellowship.

2. RANK FUNCTIONS OF DELTA-MATROIDS

The proof of Theorem goes by way of a polytopal description of normalized bisubmodular functions,
which we now recall. To a function f: AdS, — R with f() = 0, we associate the polytope

P(f)={z: {(es,z) < f(9) for all non-empty S € AdS,,}.

By |11, Theorem 4.5] (or [2, Theorem 5.2]), P(f) has all edges parallel to e; or e; + e; if and only if f is
bisubmodular. In this case, P(f) is a lattice polytope if and only if f is integer-valued. For a normalized
(i.e., f(0) = 0) bisubmodular function f, we can recover f from P(f) via the formula
S) = max {eg,x).
f(§)= n Pg;)< S5 )
Under this dictionary, the bisubmodular function corresponding to the dilate kP(f) is kf, and the bisub-
modular function corresponding to the Minkowski sum P(f)+ P(g) is f + g.

Proof of Theorem[I.4 By the polyhedral description of normalized bisubmodular functions, for each delta-
matroid D there is a unique normalized bisubmodular function g such that P(D) = P(g). We show that
the conditions on a normalized bisubmodular function g for P(g) to have all vertices in {—1, 1}" are exactly
those given in Theorem [1.2] namely that [g(S)| < 1 when |S| =1 and g(S) = |S| (mod 2).

The polytope P(g) has all vertices in {+1}" if and only if 3(P(g) + (1,...,1)) is a lattice polytope which
is contained in [0, 1]". The normalized bisubmodular function h corresponding to the point (1,...,1) takes
value h(S) = [ST| — |S~| on an admissible set of the form S = ST U S—, with ST, S~ C [n]. The polytope
1(P(9)+(1,...,1)) is P(f), where f is the normalized bisubmodular function defined by f := 1(g+h). We

2
note that P(f) is a lattice polytope which is contained in [0, 1]™ if and only if

(1) f(i) € {0,1} and f(z) € {—1,0}, and
(2) f is integer-valued.

A normalized bisubmodular function f satisfies these conditions if and only if g satisfies the conditions of
Theorem giving the characterization of rank functions of delta-matroids.
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By [2, Example 5.2.3], the polytope P(gp) = P(D) has all edges parallel to e; & e; if and only if gp
satisfies the condition

gp(S) = 9p(5U70) J;gD(S Ui) whenever |[S| =n —1 and {i,i} NS = 0.
This gives the characterization of even delta-matroids. O

2.1. Compatibility with delta-matroid operations. In this section, we consider several operations on
delta-matroids, and we show that the rank function behaves in a simple way under these operations. First
we consider minor operations on delta-matroids — contraction, deletion, and projection.

Definition 2.1. Let D be a delta-matroid on [n,71] with feasible sets F, and let i € [n]. We say that ¢ is a
loop of D if no feasible set contains ¢, and we say that ¢ is a coloop if every feasible set contains i.
(1) If 4 is not a loop of D, then the contraction D/i is the delta-matroid with feasible sets B\ i, for
B € F containing 1.
(2) If i is not a coloop of D, then the deletion D \ i is the delta-matroid with feasible sets B \ i, for
B € F containing i.
(3) The projection D(i) is the delta-matroid with feasible sets B\ {i,i} for B € F.
(4) If 4 is a loop or coloop, then set D/i = D\ i = D(3).

For A C [n], we define D/A, D\ A, and D(A) to be the delta-matroids on [n,7] \ (A U A) obtained by
successively contracting, deleting, or projecting away from all elements of A. Contractions, deletions, and
projections at disjoint sets commute with each other, so this is well defined. If A and B are disjoint subsets
of [n], then D/A\ B is the delta-matroid obtained by contracting A and then deleting B, which is the same
as first deleting B and then contracting A.

First we describe the rank function of projections. The formula is analogous to the formula for the rank
function of a matroid deletion.

Proposition 2.2. Let D be a delta-matroid on [n, 7], and let A C [n]. For each S € AdS,, disjoint from
AUA, gpy(S) = gp(S).

Proof. As S is disjoint from A UA, |[BNS|—|BNS| depends only on B\ (AU A). The feasible sets of D(A)
are given by B\ (AU A) for B a feasible set of D. O

The rank functions of the contractions and deletions are described by the following result. The formula
is analogous to the formula for the rank function of a matroid contraction.

Proposition 2.3. Let D be a delta-matroid on [n,7n]. Let A, B C [n] be disjoint subsets, and let S € AdS,
be disjoint from AUBU AU B. Then gp/a\(S) = gp(SUAUB) — gp(AU B).

Before proving this, we will need the following property of delta-matroids. It follows, for instance, from
the greedy algorithm description of delta-matroids in [11].

Proposition 2.4. Let D be a delta-matroid on [n,n], and let S C T € AdS,,. Let Fg be the collection of
feasible sets B of D that mazimize |S N B, i.e., have |S N B| = maxper |S N B'|. Then

max |T'N B| = max|T N B].
BEFs BEF
First we consider the case when we delete or contract a single element.

Lemma 2.5. Let D be a delta-matroid on [n,7|, and let i € [n]. Then
(1) If i is not a loop, then gp,;(S) = gp(SU) -1,
(2) If i is not a coloop, then gp\;(S) = gp(SUi)—1, and



6 MATT LARSON

Proof. We do the case of contraction; the case of deletion is identical. Assume that i is not a loop, and let
F; denote the set of feasible sets in D which contain 7. Note that F; is non-empty, so it is the collection of
feasible sets B of D which maximize |[{i} N B|. For any S € AdS,, with SN {i,i} = 0, by Proposition [2.4] we
have that

max [(SU4) N B| = max [(SU%) N BJ.

BeF BEF;
For any B, |(SU#)NB| —|(SUi)NB| =2|(SUi) N B|—|SUil, so we see that

max(|(S U) N B| = [(SU§) N B)) = max(/(S U9 N B~ [(SUT) N B).

The left-hand side is equal to gp(S Ui), and the right-hand side is equal to gp,;(S) + 1. O

Proof of Proposition[2.3 First note that gp(i) = 1 if ¢ is not a loop and is —1 if 7 is a loop, and similarly
gp(i) = 1if i is not a coloop and is —1 is i is a coloop. So Lemmaimplies the result holds when |S| = 1.

We induct on the size of AU B. We consider the case of adding an element ¢ € [n] to A; the case of adding
it to B is identical. We compute:

9p/avinB(S) = gp/a\B(SU) —gp/a\ (i)
=gp(SUAUBU) —gp(AUB) — (9p(AUBU1) — gp(AU B))
=gp(SU(AUi)UB) —gp((AU4) U B). O

For two non-negative integers nq, ns, identify the disjoint union of [n1] and [ns] with [ny +n2]. Given two
delta-matroids D1, D2 on [n1] and [ns], let Dy x Dy be the delta-matroid on [nq + ng] whose feasible sets are
By U By, for B; a feasible set of D;. Then we have the following description of the rank function of Dy x Ds.

Proposition 2.6. Let Dy, Dy be delta-matroids on [n1] and [ns], and let S = S1USy be an admissible subset
of [n1 4+ na,ny + na|, with S1 C [n1,71] and Sy C [ne,Ms]. Then gp, xp,(S) = gp, (S1) + 9p, (S2).

Proof. Let B; be a feasible set of D; with gp,(S1) = |S1 N By| — |S1 N By|, and let Dy be a feasible set
of Dy with gp,(S2) = |[S2 N Ba| — [S2 N Ba|. Then B; U By maximizes B +— [S N B| — [S N B|, and so
9Dy x D, (S) = [S1 N B1| — |S1 N Bi| + [S2N Ba| — |S2 N Ba| = gp, (S1) + 9p, (S2). O

We now study how the rank functions behave under the operation of twisting. Let W be the signed
permutation group, the subgroup of the symmetric group on [n, 7] which preserves AdS,. In other words,
W consists of permutations w such that w(i) = w(i). As delta-matroids are collections of admissible sets,
W acts on the set of delta-matroids on [n,71]. This action is usually called twisting in the delta-matroid
literature.

Proposition 2.7. Let D be a delta-matroid on [n,n], and let w € W. Then g,.p(S) = gp(w™!-9).

Proof. Note that, for B a feasible set of D, |SN (w-D)|—|SN(w-D)|=|(w=t-S)ND|—|(w=1-S)ND|,
which implies the result. U

Let S € AdS,, be an admissible set of size n. For any delta-matroid D on [n,n], let r be the maximal
value of |SN B|. Then {SNB: B € F,|SN B| =r} is the set of bases of a matroid on S. When S = [n],
this is sometimes called the upper matroid of D. We describe the rank function of this matroid in terms of
the rank function of D.

Proposition 2.8. Let S € AdS,, be an admissible set of size n, and let D be a delta-matroid on [n,n] with
r =maxpger |S N B|. The matroid M on S whose bases are {SNB: B € F,|SNB|=r} has rank function
_ go(T) + |7

rka (T') 9
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Proof. Let Fg be the collection of feasible sets B with |S N B| = r. Then we have that

T)+|T
tky (T) = max [T N B| <max|T N B| = M.
BeFs BeF 9
On the other hand, by Proposition [2.4] there is a feasible set B which maximizes |T'NB| and has [SNB| =,
so we have equality. r

2.2. An alternative normalization. The results of the previous section, particularly Proposition [2.8
suggest that an alternative normalization of the rank function of a delta-matroid has nice properties. Set

S)+|S
hp(s) = 9215) + 15 )2+ 151,
The function hp(S) is integer-valued and bisubmodular, and the polytope it defines is P(hp) = (P (D)+0),
where O = [—1,1]™ is the cube. This is because the bisubmodular function corresponding to O is S — |S].

Note that the function hp is non-negative and increasing, in the sense that if S C 7' € AdS,,, then hp(S) <
hp(T). Theorem implies the following characterization of the functions arising as hp for some delta-
matroid D.

Corollary 2.9. A function h: AdS,, — Z is equal to hp for some delta-matroid D if and only if
(1) h(B) =0 (normalization),
(2) h(S) € {0,1} if |S| =1 (boundedness), B
(3) h(S)+h(T)>h(SNT)+h(SUT)+|SNT|/2.
Indeed, these are exactly the conditions we need for g(S) := 2h(S) — |S| to satisfy the conditions in
Theorem [[.2]
The function hp was studied by Bouchet in [9,[10] in the more general setting of multimatroids. The
following characterization of the functions hp follows from [9, Proposition 4.2]:
Proposition 2.10. A function h: AdS,, — Z is equal to hp for some delta-matroid D if and only if

(1) h(0) =0,

(2) h(S) <h(SUa) <h(S)+1if SUa is admissible,

(3) h(S)+h(T)>h(SNT)+h(SUT) if SUT is admissible, and
(4) h(SU)+h(SUi) > 2h(S)+ 1 if SN {i,i} =0.

In |10, Theorem 2.16], a third characterizations of the functions hp is stated with a reference to an
unpublished paper of Allys.
3. THE U-POLYNOMIAL

We now study the U-polynomial of delta-matroids. We prove the following recursion for Up (u,v), which
was the original definition of the U-polynomial in |21} Definition 1.4].

Proposition 3.1. Ifn =0, the Up(u,v) = 1. For any i € [n], the U-polynomial satisfies

Upyi(u,v) +Upyi(u,v) +uUpg)(u,v), i is neither a loop nor a coloop

Up(u,v) = {

(u+v+1) Upyi(u,v), 1 18 a loop or a coloop.
First we study the behavior of the U-polynomial under products.

Lemma 3.2. Let D1, D5 be delta-matroids on [n1,71] and [na,T2]. Then Up, xp, (u,v) = Up, (u,v)Up, (u,v).
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Proof. We compute:

sy, E1lmemy D) |y, 1521m9py (52)
Up, (u,v)Up,(u,v) = E u"tT Pty 2 E w2 1P2ly 2
Sl€AdSn1 SzEAdSn2

|S11+1S21—9p, (S1)—9p, (S2)

E un1+n,2—|51\—|52|v 5
(S1,52)

|S11+1521=9py x D5 (S1US2)
= Y wmbneisi-isaly 32

(S1,82)

= UD1 X Do (uv U)a

where the third equality is Proposition [2.6 ]
= 07

Proof of Proposition[3.} If n = 0, then the only admissible subset of [n,7] is the empty set, and gp(0)
so Up(u,v) = 1. Now choose some i € [n].
First suppose that 4 is neither a loop nor a coloop. The admissible subsets of [n, T1] are partitioned into sets

.. . o = .. . . = . . _ [SI=9p(S)
containing i, sets containing 7, and sets containing neither ¢ nor ¢. If S contains 4, then u” I1Sly 2 =

. IS\il—gp/; (S\9) S|— s . IS\il=gpy\; (5\D)
=118\l 2L n—|8], =g S 1 |s\i] N

. If S contains i, then u . If S contains

S|—¢ S IS1=9p(i)(S)
n_‘slv\ | ‘;D( ) n_l_ls‘v 2()

neither ¢ not 7, then u
this case.

If i is a loop or a coloop, then D is the product of D\ 7 with a delta-matroid on 1 element with 1 feasible
set. We observe that U-polynomial of a delta-matroid on 1 element with 1 feasible set is © + v + 1, and so
Lemma implies the recursion in this case. O

=u-u . Adding these up implies the recursion in

3.1. The independence complex of a delta-matroid. In this section, we introduce the independence
complex of a delta-matroid and use it to study the U-polynomial.

Definition 3.3. We say that S € AdS,, is independent in D if gp(S) = | S|, or, equivalently, if S is contained
in a feasible subset of D. The independence complex of D is the simplicial complex on [n, 7] whose facets
are given by the feasible sets of D.

Let S € AdS,, and let T = {i € [n] : SN {i,i} = 0}. Note S is independent if and only if S is a feasible
set of D(T).
The following result is immediate from the definition of Up (u,0).

Proposition 3.4. Let f;(D) be the number of i-dimensional faces of the independence complex of D. Then
UD(U,O) = fnfl(D) + fnf2(D)u +ee f,l(D)u".

Note that the f-vector of a pure simplicial complex, like the independence complex of a delta-matroid, is
a pure O-sequence. Then [26] gives the following inequalities.

Corollary 3.5. Let Up(u,0) = ap +an_1u+---agu™. Then (ag,...,a,) s the f-vector of a pure simplicial
complex. In particular, a; < an—; fori <n/2 and ag <a; <--- < | ng1).

Proposition is a delta-matroid analogue of the fact that, for a matroid M, the coefficients of Ry (u,0),
when written backwards, are the face numbers of the independence complex of M. The independence complex
of a matroid is shellable [4], which is reflected in the fact that Rps(u—1,0) has non-negative coefficients. The
independence complex of a delta-matroid is not in general shellable or Cohen—Macaulay, and Up(u — 1,0)
can have negative coefficients.
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Recall that O = [—1,1]™ is the cube. The map S +— eg induces a bijection between AdS,, and lattice
points of [J. We use this to give a polytopal description of the independent sets of D, which will be useful in
the sequel.

Proposition 3.6. The map S — eg induces a bijection between independent sets of D and lattice points in

L(P(D) +0).

Proof. If S is independent in D, then there is T' € AdS,, such that SUT € F. Then eg = %(esuT +equ7),
so eg lies in £(P(D) + O).
The correspondence between normalized bisubmodular functions and polytopes gives that

%(P(D) Oy = {x : (es,7) < gD(S)2+|S}

If S is not independent, then eg violates the inequality (eg, es) < M, so eg does not lie in %(P(D) +

0). O

Remark 3.7. Let Up(u,—1) = b, + by—1u + - -+ + bou™. In small examples, (bo,...,b,) is the f-vector a
pure simplicial complex of dimension (n — 1). When M is a matroid, the coefficients of Rps(u,—1), when
written backwards, are the f-vector of the broken circuit complex of M. This suggests that (bo, . ..,b,) may
be the f-vector of a delta-matroid analogue of the broken circuit complex, and, more generally, that there
is an “activity” interpretation of the coefficients of Up(u,v —1). See [30, Corollary 5.3] for an enumerative
interpretation of b,.

3.2. Enveloping matroids. We now recall the definition of an enveloping matroid of a delta-matroid, which
was introduced for algebro-geometric reasons in [21, Section 6]. A closely related notion was considered in
19].

For S C [n,7], let ug denote the corresponding indicator vector in R"™™. For a matroid M on [n,n], let
P(M) = Conv{up : B basis of M}, and let IP(M) = Conv{ug : S independent in M}.

Definition 3.8. Let env: R[*™ — R™ be the map given by (z1,. .., z,, T, Tw) = (T1—27, ..., T —T7).
Let D be a delta-matroid on [n,7], and let M be a matroid on [n,7]. We say that M is an enveloping matroid
for D if env(P(M)) = P(D).

Note that enveloping matroids necessarily have rank n. In [21, Section 6.3], it is shown that many different
types of delta-matroids have enveloping matroids, such as realizable delta-matroids, delta-matroids arising
from the independent sets or bases of a matroid, and delta-matroids associated to graphs or embedded
graphs. We will need the following property of enveloping matroids.

Proposition 3.9. Let M be an enveloping matroid for a delta-matroid D on [n,7n]. Let S € AdS,, be an
admissible set. Then S is independent in M if and only if it is independent in D.

Proof. If S € AdS,,, then env(ug) = eg, and S is the only admissible set with this property. Furthermore, if
S € AdS,, has size n, then ug is the only indicator vector of a subset of [n, 7] of size n which is a preimage
es under env. Because env(P(M)) = P(D), we see that if B is a feasible set of D, then B is a basis for M.
This implies that the independent sets in D are independent in M.

By [21, Lemma 7.6], env(IP(M)) = 3(P(D) + 0). If S is admissible and independent in M, then

env(us) = es € 1(P(D) + 0O), so by Proposition S is independent in D. O
3.3. Lorentzian polynomials. For a multi-index m = (mg,my,...), let w™ = w{®wi™ ---. A homoge-

neous polynomial f(wg,ws,...) of degree d with real coefficients is said to be strictly Lorentzian if all its
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coeflicients are positive, and the quadratic form obtained by taking d — 2 partial derivatives is nondegen-
erate with exactly one positive eigenvalue. We say that f is Lorentzian if it is a coefficient-wise limit of
strictly Lorentzian polynomials. Lorentzian polynomials enjoy strong log-concavity properties, and the class
of Lorentzian polynomials is preserved under many natural operations.

The following lemma is a special case of [31, Proposition 3.3]. Alternatively, it can be deduced from the
proof of |12, Corollary 3.5]. We thank Nima Anari for discussing this lemma with us.

Lemma 3.10. For a polynomial f(wg,wy,...) =, cmw™, let
?(wﬂawla )= Z cmw™.
m:m; <1 for i#0
If f is Lorentzian, then f is Lorentzian.

For S € AdS,, let S C [n] denote the unsigned version of S, i.e., the image of S under the quotient of
[n,m] by the involution. For a set T', let w” =[], . wa. We now state a strengthening of Theorem

Theorem 3.11. Let D be a delta-matroid on [n, 7] which has an enveloping matroid. Then the polynomial
Z wgn_lslw§€ Rlwg, w1, . . ., wy]
S independent in D

is Lorentzian.

Remark 3.12. In |21, Theorem 8.1], it is proven that if D has an enveloping matroid, then the polynomial
wd!
|TO|!w[n]\§ € Rlwog, w1, . .., wy]

S independent in D

is Lorentzian.

Proof of Theorem[1.6, By [12, Theorem 2.10], the specialization

n

—|S “lyt

Z w(g)n \ \y|s| _ Zfi—l(D)w(Z)" Yyt
i=0

S independent in D

is Lorentzian. By [12, Example 2.26], the coefficients of a Lorentzian polynomial in two variables of degree

2n are log-concave after dividing the coefficient of wg" ‘y* by (*"), which implies the result. O

Proof of Theorem[3.11 Let M be an enveloping matroid of D. By [12, Proof of Theorem 4.14], the polyno-
mial
Z wgnflslws € Rlwo, w1, ..., Wn, WY, - - ., Wr]
S independent in M
is Lorentzian. Setting w; = w;, by [12, Theorem 2.10] the polynomial

Z wgn—\S\wSm[n]wW € Rlwg, w1, . . ., wy]

S independent in M

is Lorentzian. A term wgn_ls‘wsm[n]wsm[ﬁ] has degree at most 1 in each of the variables wq,...,w, if and
only if S is admissible, in which case it is equal to wS. Therefore, by Lemma [3.10] the polynomial

2n—|S| §
E wy w2 € Rlwg, w, ..., wy]
S€AdS,, independent in M

is Lorentzian. By Proposition [3.9] this polynomial is equal to the polynomial in Theorem (|
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Remark 3.13. Let (U,Q,r) be a multimatroid [9], i.e., U is a finite set, {2 is a partition of U, and r is a

function on partial transversals of € satisfying certain conditions. An independent set is a partial transversal

S of Q with r(S) = |S]. A multimatroid is called shelterable if  can be extended to the rank function of a

matroid on U. Then the argument used to prove Theorem [I.6]shows that, if aj is the number of independent

sets of a shelterable multimatroid of size k, then

Ul —k+1k+1
U| -k k

2
ap > Ap410k—1.
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