[next][previous][up][top][index]
search for:

Fano varieties

\def\P{\bf P} Given a variety $X$ in projective $r$-space $\P^r$, the Fano scheme $Fano_k(X)$ is the natural parameter space for the linear $k$-planes lying on $X$. In this tutorial we explore the methods for computing it. The tutorial is in three parts

A. The twenty-seven lines

B. General methods

C. Surfaces of degree $4$ in $\P^5$

In section A, we treat by hand the Fano variety of lines on a nonsingular cubic surface in $\P^3$, and find that there are indeed $27$ lines lying on the surface.

In section B, we explain a general purpose function, written to compute Fano schemes.

There are (up to linear transformations) just $3$ nondegenerate smooth surfaces of degree $4$ in $\P^5$: the Veronese embedding of $\P^2$ and the rational normal scrolls $S(1,3)$ and $S(2,2)$. Can they be distinguished by their Fano varieties of lines? To find out, read section C ! \beginsection{ A. Lines on the nonsingular cubic in $\P^3$}\par First make the homogeneous coordinate ring of the ambient projective $3$-space

i1 : R = ZZ/32003[a,b,c,d]

o1 = R

o1 : PolynomialRing

and the ideal of a nonsingular cubic

i2 : X = ideal(a^3+b^3+c^3+d^3)

            3    3    3    3
o2 = ideal(a  + b  + c  + d )

o2 : Ideal of R

We make a parametrized indeterminate line in our projective space, adding parameters $s,t$ for the line and two points $p_0..p_3$ and $q_0..q_3$ representing the points 0 and infinity on the line.

i3 : KK = coefficientRing R 

o3 = KK

o3 : QuotientRing

i4 : S = KK [s,t,p_0..p_3,q_0..q_3]

o4 = S

o4 : PolynomialRing

Then we make a map $F$ from $R$ to the new ring sending the variables to the coordinates of the general point on the line

i5 : F = map(S,R,
       s*matrix{{p_0..p_3}} +
       t*matrix{{q_0..q_3}}
         )

o5 = map(S,R,{s*p  + t*q , s*p  + t*q , s*p  + t*q , s*p  + t*q })
                 0      0     1      1     2      2     3      3

o5 : RingMap S <--- R

We now apply $F$ to the ideal of $X$

i6 : FX = F X

            3 3    3 3    3 3    3 3     2   2         2   2    3 3     2   2         2   2    3 3     2   2         2   2    3 3     2   2         2   2    3 3
o6 = ideal(s p  + s p  + s p  + s p  + 3s t*p q  + 3s*t p q  + t q  + 3s t*p q  + 3s*t p q  + t q  + 3s t*p q  + 3s*t p q  + t q  + 3s t*p q  + 3s*t p q  + t q )
              0      1      2      3         0 0         0 0      0         1 1         1 1      1         2 2         2 2      2         3 3         3 3      3

o6 : Ideal of S

and the condition we want becomes the condition that {\tt FX} vanishes identically in $s,t$. The following line produces the coefficients:

i7 : cFX = (coefficients({0,1},gens FX))_1

o7 = | p_0^3+p_1^3+p_2^3+p_3^3 3p_0^2q_0+3p_1^2q_1+3p_2^2q_2+3p_3^2q_3 3p_0q_0^2+3p_1q_1^2+3p_2q_2^2+3p_3q_3^2 q_0^3+q_1^3+q_2^3+q_3^3 |

             1       4
o7 : Matrix S  <--- S

The interface to the {\tt coefficients} routine is a bit baroque, and might change in the future. For now, the $\{0,1\}$ says to find the coefficients of each column of the matrix, with respect to the first two variables. The routine returns a list of two matrices, the second one being the one we need (index 1, since all indices start at 0 in Macaulay2)

We can get rid of some of the variables of $S$, to ease the computation:

i8 : S1 = KK[p_0..p_3,q_0..q_3]

o8 = S1

o8 : PolynomialRing

i9 : cFX = substitute(cFX, S1)

o9 = | p_0^3+p_1^3+p_2^3+p_3^3 3p_0^2q_0+3p_1^2q_1+3p_2^2q_2+3p_3^2q_3 3p_0q_0^2+3p_1q_1^2+3p_2q_2^2+3p_3q_3^2 q_0^3+q_1^3+q_2^3+q_3^3 |

              1        4
o9 : Matrix S1  <--- S1

The ring we want is the quotient

i10 : S1bar = S1/ideal cFX

o10 = S1bar

o10 : QuotientRing

Now we want to move to the Grassmannian, so we take a new polynomial ring in 6 variables that will correspond to the minors of the matrix with rows $p_0..p_3$ and $q_0..q_3$,

i11 : GR = coefficientRing R[x_0..x_5]

o11 = GR

o11 : PolynomialRing

We define a map sending the $x_i$ to the minors, regarded as elements of S1bar

i12 : M = substitute(
          exteriorPower(2, matrix{{p_0..p_3},{q_0..q_3}}),
          S1bar)

o12 = | -p_1q_0+p_0q_1 -p_2q_0+p_0q_2 -p_2q_1+p_1q_2 -p_3q_0+p_0q_3 -p_3q_1+p_1q_3 -p_3q_2+p_2q_3 |

                  1           6
o12 : Matrix S1bar  <--- S1bar

i13 : gr = map (S1bar, GR, M)

o13 = map(S1bar,GR,{- p q  + p q , - p q  + p q , - p q  + p q , - p q  + p q , - p q  + p q , - p q  + p q })
                       1 0    0 1     2 0    0 2     2 1    1 2     3 0    0 3     3 1    1 3     3 2    2 3

o13 : RingMap S1bar <--- GR

i14 : fano = trim ker gr

                                                    2      2           2      2     3    3    3     2      2     2      2   2      2             2      2       2      2     2      2   2      2     2      2     3    3    3     2      2   2      2     3    3    3
o14 = ideal (x x  - x x  + x x , x x x , x x x , x x  + x x , x x x , x x  + x x , x  + x  + x , x x  + x x , x x  - x x , x x  + x x , x x x , x x  + x x , x x  + x x , x x  + x x , x x  + x x , x x  - x x , x  + x  - x , x x  - x x , x x  - x x , x  - x  - x )
              2 3    1 4    0 5   3 4 5   1 2 5   0 4    1 5   0 2 4   0 4    1 5   3    4    5   1 3    2 4   0 3    2 5   1 3    2 4   0 1 3   0 3    2 5   1 2    3 4   0 2    3 5   1 2    3 4   0 2    3 5   1    2    5   0 1    4 5   0 1    4 5   0    2    4

o14 : Ideal of GR

{\tt trim} replaces the given set of generators with a minimal set of generators. We get an ideal representing points:

i15 : codim fano

o15 = 5

and the number of these points -- the number of the corresponding lines - is 27:

i16 : degree fano

o16 = 27

It is interesting to note that the ideal of the Fano scheme that we have produced is NOT saturated, as the number (25) of cubics it contains is less than $56 - 27 = 29$:

i17 : betti fano

o17 = generators: total: 1 20
                      0: 1  .
                      1: .  1
                      2: . 19

Possible next steps in this computation would be to compute the Jacobian ideal of Fano to show that we really got 27 distinct lines, etc. \beginsection{ B. General methods}\par The first step in writing a program is to decide what the program should do, and it is just as well to write the documentation at this point .

First, Fano and Grassmannian are commands in Macaulay 2, so are a protected symbol. We remove its current meaning by

i18 : erase symbol Fano

o18 = Fano

o18 : Symbol

i19 : erase symbol Grassmannian

o19 = Grassmannian

o19 : Symbol

The documentation has the following form:

i20 : document { Fano, 
              TT "Fano(k,X,GR) or  Fano(k,X)", " -- computes 
              the ideal of a Fano scheme in the Grassmannian.",
              PARA,
              "Given an ideal X representing a projective variety 
              in P^r, a positive integer k<r, and optionally a 
              ring GR with (exactly) r+1 choose k+1 variables, 
              representing the ambient space of the Grassmannian of 
              k-planes in P^r, this routine returns the ideal in
              GR of the Fano scheme that parametrizes the k-planes 
              lying on X. If the optional third argument is not 
              present, the routine fabricates its own local ring, 
              and returns an ideal over it."
              }

If we take the variety that is the whole of $\P^r$, we get the Grassmannian. It is useful to be able to make the ring representing the ambient space of the Grassmannian beforehand by hand, so the ideals of several Fano varieties can be compared. But often we won't need this. Thus we make the function capable of accepting this ambient ring as an argument, or of fending for itself if no ambient ring is given.

i21 : document{symbol Grassmannian, 
          TT "Grassmannian(k,r,R) or 
              Grassmannian(k,r)",
             "-- Given natural numbers k <= r,
              and optionally a ring R with at least binomial(r+1,k+1)
              variables, the routine defines the ideal of the 
              Grassmannian of projective k-planes in P^r, using 
              the first binomial(r+1,k+1) variables of R. 
              If R is not given, the routine makes and uses
              ZZ/31991[vars(0..binomial(r+1,k+1)-1]."
              }

In order to make {\tt Fano} handle an optional number of arguments, we make it a method instead of a function, as follows

i22 : Fano = method()

o22 = Fano

o22 : Function

Here is the code for the first case, with comments interspersed:

i23 : Fano(ZZ,Ideal,Ring) := (k,X,GR) -> (
        -- Get info about the base ring of X:
        -- The coefficient ring (to make new rings of
        -- the same characteristic, for example)
        -- and the number of variables
        KK:=coefficientRing ring X;
        r := (numgens ring X) - 1;
        -- Next make private variables for our 
        -- intermediate rings, to avoid interfering
        -- with something outside:
        t:=symbol t;
        p:=symbol p;
        -- And rings
        S1 := KK[t_0..t_k];
        S2 := KK[p_0..p_(k*r+k+r)];
        S := tensor(S1,S2);
        -- Over S we have a generic point of a generic
        -- line, represented by a row vector, which
        -- we use to define a map from the base ring
        -- of X
        F := map(S,ring X,
                genericMatrix(S,S_0,1,k+1)*
                genericMatrix(S,S_(k+1),k+1,r+1)
                );
        -- We now apply F to the ideal of X
        FX := F X;
        -- and the condition we want becomes the condition
        -- that FX vanishes identically in the t_i.
        -- The following line produces the matrix of
        -- coefficients of the monomials in the 
        -- variables labelled 0..k:
        cFX := (coefficients (toList(0..k),gens FX))_1;
        -- We can get rid of the variables t_i
        -- to ease the computation:
        cFX = substitute(cFX, S2);
        -- The ring we want is the quotient
        S2bar := S2/ideal cFX;
        -- Now we want to move to the Grassmannian,
        -- represented by the ring GR
        -- We define a map sending the variables of GR
        -- to the minors of the generic matrix in the
        -- p_i regarded as elements of S1bar
        gr := map(S2bar,GR,
                  exteriorPower(k+1, 
                  genericMatrix(S2bar,S2bar_0,k+1,r+1)
                  )
                 );
        -- and the defining ideal of the Fano variety is
        ker gr
      )

o23 = --Function[stdio:51:99]--

o23 : Function

The second case reduces to the first:

i24 : Fano(ZZ, Ideal) := (k,X) -> (
        KK:=coefficientRing ring X;
        r := (numgens ring X) - 1;
        -- We can specify a private ring with binomial(r+1,k+1)
        -- variables as follows
        GR := KK[Variables => binomial(r+1,k+1)];
        -- the work is done by
        Fano(k,X,GR)
      )

o24 = --Function[stdio:101:108]--

o24 : Function

With the 0 ideal we get the Grassmannian of projective $k$-planes in $\P^r$:

i25 : Grassmannian = method()

o25 = Grassmannian

o25 : Function

i26 : Grassmannian(ZZ,ZZ,Ring) := (k,r,R) ->( 
              KK := coefficientRing R;
              RPr := KK[Variables => r+1];
              Pr := ideal(0_RPr);
              Fano(k,Pr)
           )

o26 = --Function[stdio:111:115]--

o26 : Function

i27 : Grassmannian(ZZ,ZZ) := (r,k) -> (
              R := ZZ/31991[
                     vars(0..(binomial(r+1,k+1)-1))
                          ];
              Grassmannian(k,r,R)
                           )

o27 = --Function[stdio:117:121]--

o27 : Function

As a first example we can try the Fano of lines on the nonsingular quadric in $\P^3$

i28 : KK = ZZ/31991

o28 = KK

o28 : QuotientRing

i29 : R = KK[a,b,c,d]

o29 = R

o29 : PolynomialRing

i30 : X = ideal(a*b-c*d)

o30 = ideal(a*b - c*d)

o30 : Ideal of R

i31 : I = Fano(1,X)

                                                   2                                                                  2                                                      2     2
o31 = ideal ($x $x , $x $x  - 15995$x $x  - 15995$x , $x $x  + $x $x , $x $x  - $x $x , $x $x  + 15995$x $x  - 15995$x , $x $x , $x $x  - $x $x , $x $x  + $x $x , $x $x , $x  - $x , $x $x )
               3  4    2  3          0  5          5    0  4     4  5    0  3     3  5    1  4          0  5          5    1  2    0  2     2  5    0  1     1  5    2  4    0     5    1  3

o31 : Ideal of KK [$x , $x , $x , $x , $x , $x ]
                     0    1    2    3    4    5

we investigate by checking its dimension and degree

i32 : dim I

o32 = 2

The answer ``2'' means that $I$ is the ideal of a curve in $\P^5$, the ambient space of the Grassmannian of lines.

i33 : degree I

o33 = 4

The answer is 4. In fact, the ideal $I$ represents the union of two conics. \beginsection{ C. Surfaces of degree $4$ in $\P^5$}\par We now turn to the three surfaces of degree $4$ in $\P^5$, and make their ideals:

The ring of $\P^5$

i34 : KK = ZZ/31991

o34 = KK

o34 : QuotientRing

i35 : P5 = KK[a..f]

o35 = P5

o35 : PolynomialRing

It happens that the ideals of all three surfaces are generated by minors of suitable matrices:

The Veronese embedding of $\P^2$:

i36 : MVero = genericSymmetricMatrix(P5,a,3)

o36 = | a b c |
      | b d e |
      | c e f |

               3        3
o36 : Matrix P5  <--- P5

i37 : Vero = minors(2,MVero)

                2                                                  2                                                  2
o37 = ideal (- b  + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c  + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e  + d*f)

o37 : Ideal of P5

The other scrolls are defined by the minors of matrices that are made from ``catalecticant'' blocks, that is, from matrices such as $$\begin{pmatrix}b & c & d & e \\ c & d & e & f \end{pmatrix}$$ which are manufactured by

i38 : catalecticant = (R,v,m,n) -> 
              map(R^m,n,(i,j)-> R_(i+j+v))

o38 = catalecticant

o38 : Function

for example

i39 : catalecticant(P5,1,2,4)

o39 = | b c d e |
      | c d e f |

               2        4
o39 : Matrix P5  <--- P5

produces the example above. The rational normal scroll {\tt S13}, which is the union of lines joining a line with the corresponding points of a twisted cubic in a disjoint subspace of $\P^5$

i40 : M13 = catalecticant(P5,0,2,1) |
                 catalecticant(P5,2,2,3)

o40 = | a c d e |
      | b d e f |

               2        4
o40 : Matrix P5  <--- P5

i41 : S13 = minors(2,M13)

                                          2                                     2
o41 = ideal (- b*c + a*d, - b*d + a*e, - d  + c*e, - b*e + a*f, - d*e + c*f, - e  + d*f)

o41 : Ideal of P5

Finally, the rational normal scroll {\tt S22}, which is made by a similar construction starting with two conics in $\P^5$

i42 : M22 = catalecticant(P5,0,2,2) |
                           catalecticant(P5,3,2,2)

o42 = | a b d e |
      | b c e f |

               2        4
o42 : Matrix P5  <--- P5

i43 : S22 = minors(2, M22)

                2                                                               2
o43 = ideal (- b  + a*c, - b*d + a*e, - c*d + b*e, - b*e + a*f, - c*e + b*f, - e  + d*f)

o43 : Ideal of P5

It is interesting to note that the numerical invariants of these surfaces are very hard to distinguish. In particular, the graded betti numbers

i44 : Verores = res coker gens Vero

        1       6       8       3
o44 = P5  <-- P5  <-- P5  <-- P5  <-- 0
                                       
      0       1       2       3       4

o44 : ChainComplex

i45 : S22res = res coker gens S22

        1       6       8       3
o45 = P5  <-- P5  <-- P5  <-- P5  <-- 0
                                       
      0       1       2       3       4

o45 : ChainComplex

i46 : S13res = res coker gens S13

        1       6       8       3
o46 = P5  <-- P5  <-- P5  <-- P5  <-- 0
                                       
      0       1       2       3       4

o46 : ChainComplex

i47 : betti Verores

o47 = total: 1 6 8 3
          0: 1 . . .
          1: . 6 8 3

i48 : betti S22res

o48 = total: 1 6 8 3
          0: 1 . . .
          1: . 6 8 3

i49 : betti S13res

o49 = total: 1 6 8 3
          0: 1 . . .
          1: . 6 8 3

coincide, so the three cannot be distinguished on the basis of these or on the basis of the (weaker) invariants the Hilbert series or Hilbert polynomials. But the Fano varieties are more obviously different:

We compute the Fano varieties of lines on each of our surfaces.

i50 : FVero = Fano(1, Vero)

               2                        2                                                                                                                                                                             2                                                                                                         2                                                    2                                                                                                                                                             2                                            2                                                                                                                                            2                                    2                                                            2                                                                                                    2            2                                    2                    2            2
o50 = ideal ($x  , $x  $x  , $x $x  , $x  , $x  $x  , $x  $x  , $x  $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x  $x  , $x  $x  , $x $x  , $x $x  , $x  $x  , $x  , $x  $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x  , $x  $x  , $x $x  , $x  $x  , $x $x  , $x $x  , $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x  , $x $x , $x $x , $x $x  , $x $x , $x $x  , $x $x  , $x $x , $x $x , $x $x , $x $x  , $x $x , $x $x  , $x $x  , $x $x , $x $x  , $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x , $x $x , $x )
               14    13  14    8  14    13    12  13    11  13    10  13    9  14    8  13    5  14    9  13    7  13    6  13    5  13    2  14    2  13    1  13    12  14    11  14    8  12    9  12    10  14    11    10  11    7  14    8  11    5  12    9  11    7  11    6  11    5  11    2  12    2  11    1  11    12    11  12    7  12    10  12    6  14    6  12    10    4  12    8  10    1  14    9  10    7  10    6  10    4  11    5  10    3  12    4  10    3  10    1  12    2  10    1  10    4  14    3  14    8  9    9    7  9    6  9    5  9    2  9    1  9    8    0  14    7  8    6  8    4  13    5  8    3  13    3  11    4  8    3  8    2  8    0  12    1  8    0  13    0  11    0  8    0  10    7    6  7    5  7    2  7    1  7    6    4  7    5  6    4  6    3  6    2  6    1  6    4  9    5    3  9    3  7    4  5    3  5    2  5    1  5    0  9    0  7    0  5    0  6    2  4    1  4    4    3  4    3    2  3    1  3    0  4    0  3    2    1  2    0  2    1    0  1    0

o50 : Ideal of KK [$x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x  , $x  , $x  , $x  , $x  ]
                     0    1    2    3    4    5    6    7    8    9    10    11    12    13    14

i51 : betti gens FVero

o51 = total: 1 120
          0: 1   .
          1: . 120

The ideal contains all $120$ quadrics, and represents the empty set: The Veronese surface contains no lines!

i52 : FS13 = Fano(1, S13)

               2                                 2                                                                                                                                                                           2                                                                                                                                                                             2                                                                                                                                        2                                                                                             2                                                                       2                                                                                                                                                                                         2                                                                                            2                            2                                                                                            2                                              2
o52 = ideal ($x  , $x  $x  , $x $x  , $x $x  , $x  , $x  $x  , $x  $x  , $x  $x  , $x  $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x  , $x  $x  , $x  $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x  $x  , $x  $x  , $x $x  , $x $x  , $x $x  , $x $x   - $x  $x  , $x   - $x $x  , $x $x  , $x $x  , $x $x   - $x $x  , $x $x  , $x $x   - $x $x  , $x $x  , $x $x   - $x $x  , $x $x  , $x $x   - $x $x  , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x  , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x   - $x $x  , $x  - $x $x  , $x $x  - $x $x  , $x $x  , $x $x  - $x $x  , $x $x   - $x $x  , $x $x , $x $x  - $x $x  , $x $x  , $x $x  - $x $x  , $x $x   - $x $x  , $x $x  - $x $x  , $x $x  , $x $x , $x  - $x $x  , $x $x  - $x $x  , $x $x , $x $x  - $x $x  , $x $x  - $x $x  , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x  - $x $x  , $x $x  - $x $x  , $x $x , $x $x  - $x $x  , $x $x  - $x $x , $x $x  , $x $x , $x  - $x $x , $x $x  - $x $x , $x $x , $x $x , $x  - $x $x , $x $x  - $x $x , $x $x , $x $x )
               14    13  14    9  14    7  14    13    12  13    11  13    10  13    12  14    9  13    8  14    7  13    4  14    8  13    6  13    5  14    4  13    2  14    5  13    3  13    2  13    0  14    0  13    12    11  12    10  12    9  12    7  12    8  12    6  12    4  12    5  12    3  12    2  12    0  12    11  14    10  14    9  11    6  14    8  11    7  11     10  11    10     6  11    9  10    3  14    7  10     6  11    8  10    6  10     3  11    5  11    4  10     3  11    5  10    3  10     1  11    9    7  9    8  9    6  9    4  9    5  9    3  9    2  9    1  9    0  9    1  14    7  8    8    6  8    4  8    5  8    3  8    2  8    0  8    4  11     6  11    7     6  11    6  7     3  11    1  13    4  7     3  11    2  11     3  11    5  7    3  7     1  11    1  12    2  7     1  11    2  10     1  11    1  7     1  10    0  11    0  7    6     1  11    4  6     1  11    5  6    3  6     1  10    2  6     1  10    0  6    4  5    5    3  5    2  5    0  5    4     1  11    3  4     1  10    1  8    2  4     1  10    1  4     1  6    0  10    0  4    3     1  6    2  3     1  6    0  3    1  5    2     1  6    1  2     1  3    0  2    0  1

o52 : Ideal of KK [$x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x  , $x  , $x  , $x  , $x  ]
                     0    1    2    3    4    5    6    7    8    9    10    11    12    13    14

It turns out that the dimension (1) and degree (4) of these varieties coincide! Moreover, since the ideals are not saturated, one cannot directly compare the Hilbert series or free resolutions (of course one could first compute a saturation). But there is the arithmetic genus, that is, $1-H(0)$, where $H$ is the Hilbert polynomial.

i53 : hilbertPolynomial coker gens FS13

o53 = - 2*P  + 4*P
           0      1

o53 : ProjectiveHilbertPolynomial

The output, $4 \P^1 - 2 \P^0$, means ``four times the Hilbert polynomial of the projective line minus 2''; that is, the polynomial is $H(d) = 4d + 2$; so arithmetic genus is $-1$.

i54 : FS22 = Fano(1, S22)

               2                                 2                                                                                                                                                                                                                           2                                                                                                                                                                                     2                                                                                                                                                                           2                                                    2                                                                                                                                                                                                                             2                                                                                                                       2                                                                          2                                                                                  2                                                                               2            2                    2
o54 = ideal ($x  , $x  $x  , $x $x  , $x $x  , $x  , $x  $x  , $x  $x  , $x  $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x  $x  , $x  $x  , $x $x  , $x $x   - $x  $x  , $x   - $x  $x  , $x  $x   - $x $x  , $x  $x  , $x $x   - $x  $x  , $x $x   - $x $x  , $x $x  , $x $x   - $x $x  , $x $x   - $x  $x  , $x $x  , $x $x   - $x  $x  , $x $x   - $x $x  , $x   - $x $x  , $x $x   - $x $x  , $x $x   - $x $x  , $x $x   - $x $x  , $x $x  , $x $x   - $x $x  , $x $x   - $x $x  , $x $x  , $x $x  , $x $x  , $x $x  , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x  - $x  $x  , $x $x  - $x $x  , $x $x   - $x $x  , $x $x  - $x $x  , $x $x  - $x $x  , $x $x  - $x $x  , $x $x   - $x $x  , $x $x  - $x $x  , $x $x  , $x $x  , $x $x  , $x $x , $x $x , $x $x  , $x $x  , $x $x , $x $x  , $x  - $x $x  , $x $x  - $x $x  , $x $x  , $x $x  - $x $x  , $x $x  - $x $x  , $x $x  - $x $x  , $x $x , $x $x , $x $x , $x  - $x $x  , $x $x  - $x $x  , $x $x  - $x $x  , $x $x , $x $x , $x $x , $x  - $x $x  , $x $x  - $x $x  , $x $x  - $x $x  , $x $x , $x $x , $x $x , $x $x , $x  - $x $x  , $x $x  - $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x , $x $x , $x $x , $x )
               14    13  14    8  14    7  14    13    12  13    11  13    10  13    9  14    8  13    5  14    7  13    4  14    9  13    6  13    5  13    4  13    2  14    1  14    2  13    1  13    0  14    0  13    12  14    11  14    9  12    8  12     11  12    11     10  12    10  11     6  12    10  14    8  11     10  12    7  11     6  12    9  11    6  11     3  12    5  12     10  12    6  14    7  12     10  12    4  12     6  12    10     3  12    8  10     6  12    5  11     6  12    7  10     3  12    9  10    6  10     3  11    5  10     3  12    2  11    2  10    1  10    3  14    8  9    7  9    9    6  9    5  9    4  9    2  9    1  9    0  9    8     10  12    7  8     6  12    4  11     3  12    6  8     3  12    5  8     6  12    4  8     3  12    4  10     3  11    3  8     3  11    2  12    1  12    1  11    2  8    1  8    0  12    0  11    0  8    0  10    7     3  12    6  7     3  11    3  13    5  7     3  12    4  7     3  11    3  7     3  10    2  7    1  7    0  7    6     3  10    5  6     3  11    4  6     3  10    2  6    1  6    0  6    5     3  12    4  5     3  11    3  5     3  10    2  5    1  5    0  5    3  9    4     3  10    3  4     3  6    2  4    1  4    0  4    2  3    1  3    0  3    2    1  2    1    0  2    0  1    0

o54 : Ideal of KK [$x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x  , $x  , $x  , $x  , $x  ]
                     0    1    2    3    4    5    6    7    8    9    10    11    12    13    14

i55 : hilbertPolynomial coker gens FS22

o55 = - 3*P  + 4*P
           0      1

o55 : ProjectiveHilbertPolynomial

The output, $4 \P^1 - 3 \P^0$, means $H(d) = 4d + 1$, arithmetic genus $-1$. In fact, the Fano variety of {\tt S22} consists of a projective line, embedded as a smooth rational quartic; while the Fano variety of {\tt S13} consists of a smooth rational quartic (corresponding to the rulings of the surface {\tt S13} and an isolated point, corresponding to the section of negative self-intersection on the surface).


[next][previous][up][top][index]
search for: