Fano varieties
\def\P{\bf P}
Given a variety $X$ in projective
$r$-space $\P^r$, the Fano scheme
$Fano_k(X)$ is the natural parameter
space for the linear $k$-planes
lying on $X$. In this tutorial we explore
the methods for computing it. The tutorial
is in three parts
A. The twenty-seven lines
B. General methods
C. Surfaces of degree $4$ in $\P^5$
In section A, we treat by hand the Fano
variety of lines on a nonsingular cubic
surface in $\P^3$, and find that there are
indeed $27$ lines lying on the surface.
In section B, we explain a general purpose
function, written to compute Fano schemes.
There are (up to linear transformations) just
$3$ nondegenerate smooth surfaces
of degree $4$ in $\P^5$: the Veronese embedding
of $\P^2$ and the rational normal scrolls
$S(1,3)$ and $S(2,2)$. Can they be distinguished
by their Fano varieties of lines?
To find out, read section C !
\beginsection{ A. Lines on the nonsingular cubic in $\P^3$}\par
First make the homogeneous coordinate
ring of the ambient projective $3$-space
i1 : R = ZZ/32003[a,b,c,d]
o1 = R
o1 : PolynomialRing |
and the ideal of a nonsingular cubic
i2 : X = ideal(a^3+b^3+c^3+d^3)
3 3 3 3
o2 = ideal(a + b + c + d )
o2 : Ideal of R |
We make a parametrized indeterminate line in
our projective space, adding parameters $s,t$
for the line and two points $p_0..p_3$ and
$q_0..q_3$ representing the points 0 and infinity
on the line.
i3 : KK = coefficientRing R
o3 = KK
o3 : QuotientRing |
i4 : S = KK [s,t,p_0..p_3,q_0..q_3]
o4 = S
o4 : PolynomialRing |
Then we make a map $F$ from $R$ to the new ring
sending the variables to the coordinates
of the general point on the line
i5 : F = map(S,R,
s*matrix{{p_0..p_3}} +
t*matrix{{q_0..q_3}}
)
o5 = map(S,R,{s*p + t*q , s*p + t*q , s*p + t*q , s*p + t*q })
0 0 1 1 2 2 3 3
o5 : RingMap S <--- R |
We now apply $F$ to the ideal of $X$
i6 : FX = F X
3 3 3 3 3 3 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3
o6 = ideal(s p + s p + s p + s p + 3s t*p q + 3s*t p q + t q + 3s t*p q + 3s*t p q + t q + 3s t*p q + 3s*t p q + t q + 3s t*p q + 3s*t p q + t q )
0 1 2 3 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
o6 : Ideal of S |
and the condition we want becomes the condition
that {\tt FX} vanishes identically in $s,t$.
The following line produces the coefficients:
i7 : cFX = (coefficients({0,1},gens FX))_1
o7 = | p_0^3+p_1^3+p_2^3+p_3^3 3p_0^2q_0+3p_1^2q_1+3p_2^2q_2+3p_3^2q_3 3p_0q_0^2+3p_1q_1^2+3p_2q_2^2+3p_3q_3^2 q_0^3+q_1^3+q_2^3+q_3^3 |
1 4
o7 : Matrix S <--- S |
The interface to the {\tt coefficients} routine is a bit
baroque, and might change in the future. For now,
the $\{0,1\}$ says to find the coefficients of each column
of the matrix, with respect to the first two variables.
The routine returns a list of two matrices, the
second one being the one we need (index 1, since
all indices start at 0 in Macaulay2)
We can get rid of some of the variables of $S$,
to ease the computation:
i8 : S1 = KK[p_0..p_3,q_0..q_3]
o8 = S1
o8 : PolynomialRing |
i9 : cFX = substitute(cFX, S1)
o9 = | p_0^3+p_1^3+p_2^3+p_3^3 3p_0^2q_0+3p_1^2q_1+3p_2^2q_2+3p_3^2q_3 3p_0q_0^2+3p_1q_1^2+3p_2q_2^2+3p_3q_3^2 q_0^3+q_1^3+q_2^3+q_3^3 |
1 4
o9 : Matrix S1 <--- S1 |
The ring we want is the quotient
i10 : S1bar = S1/ideal cFX
o10 = S1bar
o10 : QuotientRing |
Now we want to move to the Grassmannian,
so we take a new polynomial ring in 6 variables
that will correspond to the minors of the
matrix with rows $p_0..p_3$ and $q_0..q_3$,
i11 : GR = coefficientRing R[x_0..x_5]
o11 = GR
o11 : PolynomialRing |
We define a map sending the $x_i$ to the minors,
regarded as elements of S1bar
i12 : M = substitute(
exteriorPower(2, matrix{{p_0..p_3},{q_0..q_3}}),
S1bar)
o12 = | -p_1q_0+p_0q_1 -p_2q_0+p_0q_2 -p_2q_1+p_1q_2 -p_3q_0+p_0q_3 -p_3q_1+p_1q_3 -p_3q_2+p_2q_3 |
1 6
o12 : Matrix S1bar <--- S1bar |
i13 : gr = map (S1bar, GR, M)
o13 = map(S1bar,GR,{- p q + p q , - p q + p q , - p q + p q , - p q + p q , - p q + p q , - p q + p q })
1 0 0 1 2 0 0 2 2 1 1 2 3 0 0 3 3 1 1 3 3 2 2 3
o13 : RingMap S1bar <--- GR |
i14 : fano = trim ker gr
2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 3 3 3
o14 = ideal (x x - x x + x x , x x x , x x x , x x + x x , x x x , x x + x x , x + x + x , x x + x x , x x - x x , x x + x x , x x x , x x + x x , x x + x x , x x + x x , x x + x x , x x - x x , x + x - x , x x - x x , x x - x x , x - x - x )
2 3 1 4 0 5 3 4 5 1 2 5 0 4 1 5 0 2 4 0 4 1 5 3 4 5 1 3 2 4 0 3 2 5 1 3 2 4 0 1 3 0 3 2 5 1 2 3 4 0 2 3 5 1 2 3 4 0 2 3 5 1 2 5 0 1 4 5 0 1 4 5 0 2 4
o14 : Ideal of GR |
{\tt trim} replaces the given set of generators
with a minimal set of generators.
We get an ideal representing points:
and the number of these points -- the number
of the corresponding lines - is 27:
i16 : degree fano
o16 = 27 |
It is interesting to note
that the ideal of the
Fano scheme that we have produced is NOT
saturated, as the number (25) of cubics it
contains is less than $56 - 27 = 29$:
i17 : betti fano
o17 = generators: total: 1 20
0: 1 .
1: . 1
2: . 19 |
Possible next steps in this computation would
be to compute the Jacobian ideal of Fano to
show that we really got 27 distinct lines, etc.
\beginsection{ B. General methods}\par
The first step in writing a program is to
decide what the program should do, and it
is just as well to write the documentation
at this point .
First, Fano and Grassmannian are commands in Macaulay 2, so
are a protected symbol. We remove its current
meaning by
i18 : erase symbol Fano
o18 = Fano
o18 : Symbol |
i19 : erase symbol Grassmannian
o19 = Grassmannian
o19 : Symbol |
The documentation has the following form:
i20 : document { Fano,
TT "Fano(k,X,GR) or Fano(k,X)", " -- computes
the ideal of a Fano scheme in the Grassmannian.",
PARA,
"Given an ideal X representing a projective variety
in P^r, a positive integer k<r, and optionally a
ring GR with (exactly) r+1 choose k+1 variables,
representing the ambient space of the Grassmannian of
k-planes in P^r, this routine returns the ideal in
GR of the Fano scheme that parametrizes the k-planes
lying on X. If the optional third argument is not
present, the routine fabricates its own local ring,
and returns an ideal over it."
} |
If we take the variety that is the whole
of $\P^r$, we get the Grassmannian.
It is useful to be able to
make the ring representing the
ambient space of the Grassmannian beforehand
by hand, so the ideals of several Fano
varieties can be compared. But often
we won't need this. Thus we make the
function capable of accepting this ambient
ring as an argument, or of fending for
itself if no ambient ring is given.
i21 : document{symbol Grassmannian,
TT "Grassmannian(k,r,R) or
Grassmannian(k,r)",
"-- Given natural numbers k <= r,
and optionally a ring R with at least binomial(r+1,k+1)
variables, the routine defines the ideal of the
Grassmannian of projective k-planes in P^r, using
the first binomial(r+1,k+1) variables of R.
If R is not given, the routine makes and uses
ZZ/31991[vars(0..binomial(r+1,k+1)-1]."
} |
In order to make {\tt Fano} handle an optional
number of arguments, we make it a method
instead of a function, as follows
i22 : Fano = method()
o22 = Fano
o22 : Function |
Here is the code for the first case, with
comments interspersed:
i23 : Fano(ZZ,Ideal,Ring) := (k,X,GR) -> (
-- Get info about the base ring of X:
-- The coefficient ring (to make new rings of
-- the same characteristic, for example)
-- and the number of variables
KK:=coefficientRing ring X;
r := (numgens ring X) - 1;
-- Next make private variables for our
-- intermediate rings, to avoid interfering
-- with something outside:
t:=symbol t;
p:=symbol p;
-- And rings
S1 := KK[t_0..t_k];
S2 := KK[p_0..p_(k*r+k+r)];
S := tensor(S1,S2);
-- Over S we have a generic point of a generic
-- line, represented by a row vector, which
-- we use to define a map from the base ring
-- of X
F := map(S,ring X,
genericMatrix(S,S_0,1,k+1)*
genericMatrix(S,S_(k+1),k+1,r+1)
);
-- We now apply F to the ideal of X
FX := F X;
-- and the condition we want becomes the condition
-- that FX vanishes identically in the t_i.
-- The following line produces the matrix of
-- coefficients of the monomials in the
-- variables labelled 0..k:
cFX := (coefficients (toList(0..k),gens FX))_1;
-- We can get rid of the variables t_i
-- to ease the computation:
cFX = substitute(cFX, S2);
-- The ring we want is the quotient
S2bar := S2/ideal cFX;
-- Now we want to move to the Grassmannian,
-- represented by the ring GR
-- We define a map sending the variables of GR
-- to the minors of the generic matrix in the
-- p_i regarded as elements of S1bar
gr := map(S2bar,GR,
exteriorPower(k+1,
genericMatrix(S2bar,S2bar_0,k+1,r+1)
)
);
-- and the defining ideal of the Fano variety is
ker gr
)
o23 = --Function[stdio:51:99]--
o23 : Function |
The second case reduces to the first:
i24 : Fano(ZZ, Ideal) := (k,X) -> (
KK:=coefficientRing ring X;
r := (numgens ring X) - 1;
-- We can specify a private ring with binomial(r+1,k+1)
-- variables as follows
GR := KK[Variables => binomial(r+1,k+1)];
-- the work is done by
Fano(k,X,GR)
)
o24 = --Function[stdio:101:108]--
o24 : Function |
With the 0 ideal we get the Grassmannian
of projective $k$-planes in $\P^r$:
i25 : Grassmannian = method()
o25 = Grassmannian
o25 : Function |
i26 : Grassmannian(ZZ,ZZ,Ring) := (k,r,R) ->(
KK := coefficientRing R;
RPr := KK[Variables => r+1];
Pr := ideal(0_RPr);
Fano(k,Pr)
)
o26 = --Function[stdio:111:115]--
o26 : Function |
i27 : Grassmannian(ZZ,ZZ) := (r,k) -> (
R := ZZ/31991[
vars(0..(binomial(r+1,k+1)-1))
];
Grassmannian(k,r,R)
)
o27 = --Function[stdio:117:121]--
o27 : Function |
As a first example we can try
the Fano of lines on the nonsingular quadric
in $\P^3$
i28 : KK = ZZ/31991
o28 = KK
o28 : QuotientRing |
i29 : R = KK[a,b,c,d]
o29 = R
o29 : PolynomialRing |
i30 : X = ideal(a*b-c*d)
o30 = ideal(a*b - c*d)
o30 : Ideal of R |
i31 : I = Fano(1,X)
2 2 2 2
o31 = ideal ($x $x , $x $x - 15995$x $x - 15995$x , $x $x + $x $x , $x $x - $x $x , $x $x + 15995$x $x - 15995$x , $x $x , $x $x - $x $x , $x $x + $x $x , $x $x , $x - $x , $x $x )
3 4 2 3 0 5 5 0 4 4 5 0 3 3 5 1 4 0 5 5 1 2 0 2 2 5 0 1 1 5 2 4 0 5 1 3
o31 : Ideal of KK [$x , $x , $x , $x , $x , $x ]
0 1 2 3 4 5 |
we investigate by checking its dimension
and degree
The answer ``2'' means that $I$ is the ideal
of a curve in $\P^5$, the ambient space of
the Grassmannian of lines.
The answer is 4. In fact, the ideal $I$ represents
the union of two conics.
\beginsection{ C. Surfaces of degree $4$ in $\P^5$}\par
We now turn to the three surfaces of
degree $4$ in $\P^5$, and make their ideals:
The ring of $\P^5$
i34 : KK = ZZ/31991
o34 = KK
o34 : QuotientRing |
i35 : P5 = KK[a..f]
o35 = P5
o35 : PolynomialRing |
It happens that the ideals of
all three surfaces are generated by minors
of suitable matrices:
The Veronese embedding of $\P^2$:
i36 : MVero = genericSymmetricMatrix(P5,a,3)
o36 = | a b c |
| b d e |
| c e f |
3 3
o36 : Matrix P5 <--- P5 |
i37 : Vero = minors(2,MVero)
2 2 2
o37 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o37 : Ideal of P5 |
The other scrolls are defined by the minors
of matrices that are made from
``catalecticant'' blocks, that is, from
matrices such as
$$\begin{pmatrix}b & c & d & e \\
c & d & e & f \end{pmatrix}$$
which are manufactured by
i38 : catalecticant = (R,v,m,n) ->
map(R^m,n,(i,j)-> R_(i+j+v))
o38 = catalecticant
o38 : Function |
for example
i39 : catalecticant(P5,1,2,4)
o39 = | b c d e |
| c d e f |
2 4
o39 : Matrix P5 <--- P5 |
produces the example above.
The rational normal scroll {\tt S13}, which is
the union of lines joining a line with
the corresponding points of a twisted cubic
in a disjoint subspace of $\P^5$
i40 : M13 = catalecticant(P5,0,2,1) |
catalecticant(P5,2,2,3)
o40 = | a c d e |
| b d e f |
2 4
o40 : Matrix P5 <--- P5 |
i41 : S13 = minors(2,M13)
2 2
o41 = ideal (- b*c + a*d, - b*d + a*e, - d + c*e, - b*e + a*f, - d*e + c*f, - e + d*f)
o41 : Ideal of P5 |
Finally, the rational normal scroll {\tt S22},
which is made by a similar construction
starting with two conics in $\P^5$
i42 : M22 = catalecticant(P5,0,2,2) |
catalecticant(P5,3,2,2)
o42 = | a b d e |
| b c e f |
2 4
o42 : Matrix P5 <--- P5 |
i43 : S22 = minors(2, M22)
2 2
o43 = ideal (- b + a*c, - b*d + a*e, - c*d + b*e, - b*e + a*f, - c*e + b*f, - e + d*f)
o43 : Ideal of P5 |
It is interesting to note that the numerical
invariants of these surfaces are very hard
to distinguish. In particular, the graded
betti numbers
i44 : Verores = res coker gens Vero
1 6 8 3
o44 = P5 <-- P5 <-- P5 <-- P5 <-- 0
0 1 2 3 4
o44 : ChainComplex |
i45 : S22res = res coker gens S22
1 6 8 3
o45 = P5 <-- P5 <-- P5 <-- P5 <-- 0
0 1 2 3 4
o45 : ChainComplex |
i46 : S13res = res coker gens S13
1 6 8 3
o46 = P5 <-- P5 <-- P5 <-- P5 <-- 0
0 1 2 3 4
o46 : ChainComplex |
i47 : betti Verores
o47 = total: 1 6 8 3
0: 1 . . .
1: . 6 8 3 |
i48 : betti S22res
o48 = total: 1 6 8 3
0: 1 . . .
1: . 6 8 3 |
i49 : betti S13res
o49 = total: 1 6 8 3
0: 1 . . .
1: . 6 8 3 |
coincide, so the three cannot be distinguished
on the basis of these or on the basis of
the (weaker) invariants the Hilbert series
or Hilbert polynomials. But the Fano
varieties are more obviously different:
We compute the Fano varieties of lines
on each of our surfaces.
i50 : FVero = Fano(1, Vero)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
o50 = ideal ($x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x , $x $x , $x )
14 13 14 8 14 13 12 13 11 13 10 13 9 14 8 13 5 14 9 13 7 13 6 13 5 13 2 14 2 13 1 13 12 14 11 14 8 12 9 12 10 14 11 10 11 7 14 8 11 5 12 9 11 7 11 6 11 5 11 2 12 2 11 1 11 12 11 12 7 12 10 12 6 14 6 12 10 4 12 8 10 1 14 9 10 7 10 6 10 4 11 5 10 3 12 4 10 3 10 1 12 2 10 1 10 4 14 3 14 8 9 9 7 9 6 9 5 9 2 9 1 9 8 0 14 7 8 6 8 4 13 5 8 3 13 3 11 4 8 3 8 2 8 0 12 1 8 0 13 0 11 0 8 0 10 7 6 7 5 7 2 7 1 7 6 4 7 5 6 4 6 3 6 2 6 1 6 4 9 5 3 9 3 7 4 5 3 5 2 5 1 5 0 9 0 7 0 5 0 6 2 4 1 4 4 3 4 3 2 3 1 3 0 4 0 3 2 1 2 0 2 1 0 1 0
o50 : Ideal of KK [$x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x ]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
i51 : betti gens FVero
o51 = total: 1 120
0: 1 .
1: . 120 |
The ideal contains all $120$ quadrics,
and represents the empty set: The
Veronese surface contains no lines!
i52 : FS13 = Fano(1, S13)
2 2 2 2 2 2 2 2 2 2 2 2
o52 = ideal ($x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x - $x $x , $x - $x $x , $x $x , $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x - $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x )
14 13 14 9 14 7 14 13 12 13 11 13 10 13 12 14 9 13 8 14 7 13 4 14 8 13 6 13 5 14 4 13 2 14 5 13 3 13 2 13 0 14 0 13 12 11 12 10 12 9 12 7 12 8 12 6 12 4 12 5 12 3 12 2 12 0 12 11 14 10 14 9 11 6 14 8 11 7 11 10 11 10 6 11 9 10 3 14 7 10 6 11 8 10 6 10 3 11 5 11 4 10 3 11 5 10 3 10 1 11 9 7 9 8 9 6 9 4 9 5 9 3 9 2 9 1 9 0 9 1 14 7 8 8 6 8 4 8 5 8 3 8 2 8 0 8 4 11 6 11 7 6 11 6 7 3 11 1 13 4 7 3 11 2 11 3 11 5 7 3 7 1 11 1 12 2 7 1 11 2 10 1 11 1 7 1 10 0 11 0 7 6 1 11 4 6 1 11 5 6 3 6 1 10 2 6 1 10 0 6 4 5 5 3 5 2 5 0 5 4 1 11 3 4 1 10 1 8 2 4 1 10 1 4 1 6 0 10 0 4 3 1 6 2 3 1 6 0 3 1 5 2 1 6 1 2 1 3 0 2 0 1
o52 : Ideal of KK [$x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x ]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
It turns out that the dimension (1) and
degree (4) of these varieties coincide!
Moreover, since the ideals are not saturated,
one cannot directly compare the Hilbert
series or free resolutions (of course
one could first compute a saturation).
But there is the arithmetic genus,
that is, $1-H(0)$, where $H$ is the Hilbert
polynomial.
i53 : hilbertPolynomial coker gens FS13
o53 = - 2*P + 4*P
0 1
o53 : ProjectiveHilbertPolynomial |
The output, $4 \P^1 - 2 \P^0$, means ``four times the
Hilbert polynomial of the projective line
minus 2''; that is, the polynomial is
$H(d) = 4d + 2$; so arithmetic genus is $-1$.
i54 : FS22 = Fano(1, S22)
2 2 2 2 2 2 2 2 2 2 2 2 2
o54 = ideal ($x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x - $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x $x , $x $x , $x - $x $x , $x $x - $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x $x , $x , $x $x , $x , $x $x , $x $x , $x )
14 13 14 8 14 7 14 13 12 13 11 13 10 13 9 14 8 13 5 14 7 13 4 14 9 13 6 13 5 13 4 13 2 14 1 14 2 13 1 13 0 14 0 13 12 14 11 14 9 12 8 12 11 12 11 10 12 10 11 6 12 10 14 8 11 10 12 7 11 6 12 9 11 6 11 3 12 5 12 10 12 6 14 7 12 10 12 4 12 6 12 10 3 12 8 10 6 12 5 11 6 12 7 10 3 12 9 10 6 10 3 11 5 10 3 12 2 11 2 10 1 10 3 14 8 9 7 9 9 6 9 5 9 4 9 2 9 1 9 0 9 8 10 12 7 8 6 12 4 11 3 12 6 8 3 12 5 8 6 12 4 8 3 12 4 10 3 11 3 8 3 11 2 12 1 12 1 11 2 8 1 8 0 12 0 11 0 8 0 10 7 3 12 6 7 3 11 3 13 5 7 3 12 4 7 3 11 3 7 3 10 2 7 1 7 0 7 6 3 10 5 6 3 11 4 6 3 10 2 6 1 6 0 6 5 3 12 4 5 3 11 3 5 3 10 2 5 1 5 0 5 3 9 4 3 10 3 4 3 6 2 4 1 4 0 4 2 3 1 3 0 3 2 1 2 1 0 2 0 1 0
o54 : Ideal of KK [$x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x , $x ]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
i55 : hilbertPolynomial coker gens FS22
o55 = - 3*P + 4*P
0 1
o55 : ProjectiveHilbertPolynomial |
The output, $4 \P^1 - 3 \P^0$, means $H(d) = 4d + 1$,
arithmetic genus $-1$.
In fact, the Fano variety of {\tt S22} consists of
a projective line, embedded as a smooth
rational quartic;
while the Fano variety of {\tt S13} consists of
a smooth rational quartic (corresponding to
the rulings of the surface {\tt S13} and an
isolated point, corresponding to the section
of negative self-intersection on the surface).