[top][index]
search for:

ICmap Ring -- natural map from an affine domain into its integral closure.

Synopsis:

  • Usage: F = ICmap R
  • Function: ICmap
  • Input:
  • R, an instance of class Ring: affine domain
  • Output:
  • S, an instance of class RingMap: returns a map from R to its integral closure
  • Note that if an integrally closed ring is given as input a map from the ring to itself is returned.

    i1 : R = QQ[x,y,z]/ideal(x^6-z^6-y^2*z^4);
    i2 : ICmap R

                          QQ [w , w , x, y, z]
                               7   6
    o2 = map(---------------------------------------------,R,{x, y, z})
               2                    2         2    2    2
             (x  - w z, w x - w z, w  - w x, w  - y  - z )
                    6    6     7    6    7    7

                              QQ [w , w , x, y, z]
                                   7   6
    o2 : RingMap --------------------------------------------- <--- R
                   2                    2         2    2    2
                 (x  - w z, w x - w z, w  - w x, w  - y  - z )
                        6    6     7    6    7    7


    [top][index]
    search for: