


![[top]](top.gif)
Matrix ** Ring -- tensor product
Synopsis:
f ** R -- form the tensor product of a module map f with
a ring R.
The ring of f should be a base ring of R. The degree
of the map is preserved.
i1 : R = ZZ[a..c]; |
i2 : S = R/(a+b+c); |
i3 : f = vars R
o3 = | a b c |
1 3
o3 : Matrix R <--- R |
i4 : f ** S
o4 = | -b-c b c |
1 3
o4 : Matrix S <--- S |



![[top]](top.gif)