[top][index]
search for:

monomialSubideal Ideal -- find the largest monomial ideal in an ideal

Synopsis:

  • Usage: J = monomialSubideal I
  • Function: monomialSubideal
  • Input:
  • I, an instance of class Ideal: an Ideal.
  • Output:
  • J, an instance of class Thing: the largest monomial ideal contained in I
  • i1 : QQ[a,b,c,d];
    i2 : I = ideal(b*c, c^2 - b*d, -a*c+b^2)

                      2         2
    o2 = ideal (b*c, c  - b*d, b  - a*c)

    o2 : Ideal of QQ [a, b, c, d]
    i3 : monomialSubideal I

                         3          2   3          2
    o3 = monomialIdeal (b , b*c, a*c , c , a*b*d, b d, a*c*d)

    o3 : MonomialIdeal of QQ [a, b, c, d]

    Implemented by Greg Smith


    [top][index]
    search for: