[top][index]
search for:

bases of parts of modules

The function basis can be used to produce bases (over the ground field) of parts of modules (and rings) of a specified degree.

i1 : R = ZZ/101[a..c];
i2 : basis(2, R)

o2 = | a2 ab ac b2 bc c2 |

             1       6
o2 : Matrix R  <--- R
i3 : M = ideal(a,b,c)/ideal(a^2,b^2,c^2);
i4 : f = basis(2,M)

o4 = {1} | b c 0 |
     {1} | 0 0 c |
     {1} | 0 0 0 |

o4 : Matrix

Notice that the matrix of f is expressed in terms of the generators of M. The reason is that M is the target of f, and matrices such as f are always expressed in terms of the generators of the source and target.

i5 : target f

o5 = subquotient (| a b c |, | a2 b2 c2 |)

                               1
o5 : R-module, subquotient of R

The command super is useful for getting around this.

i6 : super f

o6 = | ab ac bc |

o6 : Matrix

When a ring is multi-graded, we specify the degree as a list of integers.

i7 : S = ZZ/101[x,y,z,Degrees=>{{1,3},{1,4},{1,-1}}];
i8 : basis({7,24}, S)

o8 = | x4y3 |

             1       1
o8 : Matrix S  <--- S


[top][index]
search for: