[next][up][top][index]
search for:

free modules

We use Ring ^ ZZ to make a new free module.

i1 : R = ZZ/101[x,y,z];
i2 : M = R^4

      4
o2 = R

o2 : R-module, free

Such modules are often made as a side effect when creating matrices, to serve as the source and target of the corresponding homomorphism.

When the ring is graded, so are its free modules. By default, the degrees of the basis elements are taken to be 0.

i3 : degrees M

o3 = {{0}, {0}, {0}, {0}}

o3 : List

We can use Ring ^ {...} to specify other degrees, or more precisely, their additive inverses.

i4 : F = R^{1,4:2,3,3:4}

      9
o4 = R

o4 : R-module, free, degrees {-1, -2, -2, -2, -2, -3, -4, -4, -4}
i5 : degrees F

o5 = {{-1}, {-2}, {-2}, {-2}, {-2}, {-3}, {-4}, {-4}, {-4}}

o5 : List

Notice the use of : above to indicate repetition.

If the variables of the ring have multi-degrees represented by lists (vectors) of integers, as described in multi-graded polynomial rings, then the degrees of a free module must also be multi-degrees.

i6 : S = ZZ[a,b,c, Degrees=>{{1,2},{2,0},{3,3}}]

o6 = S

o6 : PolynomialRing
i7 : N = S ^ {{-1,-1},{-4,4},{0,0}}

      3
o7 = S

o7 : S-module, free, degrees {{1, 1}, {4, -4}, {0, 0}}
i8 : degree N_0

o8 = {1, 1}

o8 : List
i9 : degree (a*b*N_1)

o9 = {7, -2}

o9 : List


[next][up][top][index]
search for: