[next][previous][up][top][index]
search for:

tensor products of rings

The operator ** or the function tensor can be used to construct tensor products of rings.

i1 : ZZ/101[x,y]/(x^2-y^2) ** ZZ/101[a,b]/(a^3+b^3)

       ZZ
      --- [x, y, a, b]
      101
o1 = ------------------
       2    2   3    3
     (x  - y , a  + b )

o1 : QuotientRing

Other monomial orderings can be specified.

i2 : T = tensor(ZZ/101[x,y], ZZ/101[a,b], MonomialOrder => Eliminate 2)

o2 = T

o2 : PolynomialRing

The options to tensor can be discovered with options.

i3 : options tensor

o3 = OptionTable{Adjust => identity      }
                 Degrees => 
                 Inverses => false
                 MonomialOrder => GRevLex
                 MonomialSize => 8
                 NewMonomialOrder => 
                 Repair => identity
                 SkewCommutative => false
                 VariableBaseName => 
                 VariableOrder => 
                 Variables => 
                 Weights => {}
                 WeylAlgebra => {}

o3 : OptionTable

Given two (quotients of) polynomial rings, say, R = A[x1, ..., xn]/I, S = A[y1,...,yn]/J, then R ** S = A[x1,...,xn,y1, ..., yn]/(I + J). The variables in the two rings are always considered as different. If they have name conflicts, you may still use the variables with indexing, but the display will be confusing:

i4 : R = QQ[x,y]/(x^3-y^2);
i5 : T = R ** R

o5 = T

o5 : QuotientRing
i6 : generators T

o6 = {x, y, x, y}

o6 : List
i7 : {T_0 + T_1, T_0 + T_2}

o7 = {x + y, x + x}

o7 : List

We can change the variable names with the Variables option.

i8 : U = tensor(R,R,Variables => {x,y,x',y'})

o8 = U

o8 : QuotientRing
i9 : x + y + x' + y'

o9 = x + y + x' + y'

o9 : U


[next][previous][up][top][index]
search for: