[top][index]
search for:

standardPairs MonomialIdeal -- finds the standard pairs of a monomial ideal

Synopsis:

  • Usage: L = standardPairs I
  • Function: standardPairs
  • Input:
  • I, an instance of class MonomialIdeal: a monomial ideal
  • Output:
  • L, an instance of class Thing: a list of the standard pairs of I
  • A standard pair of a monomial ideal I is a pair {xa,l} where m is a monomial and l is a subset of the variables subject to the following three conditions:

    1. m is supported on the complement of l.
    2. for all monomials n supported on l the monomial m * n does not belong to I.
    3. for all monomials n supported on l there exists bj >= 0 such that m xjbj n lies in I.

    i1 : QQ[x,y,z,w];
    i2 : I = monomialIdeal(y^2, y*w, y*z, x*w^2)

                         2               2
    o2 = monomialIdeal (y , y*z, y*w, x*w )

    o2 : MonomialIdeal of QQ [x, y, z, w]
    i3 : standardPairs I

    o3 = {{1, {z, w}}, {1, {z, x}}, {w, {z, x}}, {y, {x}}}

    o3 : List

    The standard pairs are computed with algorithm 3.2.5 in Groebner Deformations of Hypergeometric Differential Equations, by Mutsumi Saito, Bernd Sturmfels and Nobuki Takayama; Algorithms and Computation in Mathematics, Volume 6, Springer-Verlag, 2000.

    Implemented by Greg Smith.

    Code:

         -- ../../../Macaulay2/m2/monideal.m2:347
         standardPairs MonomialIdeal := (I) -> standardPairs(I,Delta I)

    [top][index]
    search for: