minors(ZZ,Matrix) -- ideal generated by minors
Synopsis:
Minors are generated in the same order as that used by subsets(ZZ,ZZ).
i1 : R = ZZ[vars(0..11)]; |
i2 : M = genericMatrix(R,a,4,3)
o2 = | a e i |
| b f j |
| c g k |
| d h l |
4 3
o2 : Matrix R <--- R |
i3 : transpose generators minors(2,M)
o3 = {-2} | -be+af |
{-2} | -ce+ag |
{-2} | -cf+bg |
{-2} | -de+ah |
{-2} | -df+bh |
{-2} | -dg+ch |
{-2} | -bi+aj |
{-2} | -ci+ak |
{-2} | -cj+bk |
{-2} | -di+al |
{-2} | -dj+bl |
{-2} | -dk+cl |
{-2} | -fi+ej |
{-2} | -gi+ek |
{-2} | -gj+fk |
{-2} | -hi+el |
{-2} | -hj+fl |
{-2} | -hk+gl |
18 1
o3 : Matrix R <--- R |
i4 : subsets(4,2)
o4 = {{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}}
o4 : List |
The order is {{0,1},{0,1}}, {{0,2},{0,1}}, {{1,2},{0,1}}, and so on.
If the minors(..., First => ...) option is not given, the minors are stashed
in the matrix under the key m.cache#MinorsComputation{j}. The class of
this stashed object is the internal class MinorsComputation.