[top][index]
search for:

minors(ZZ,Matrix) -- ideal generated by minors

Synopsis:

  • Usage: J = minors(p,m)
  • Function: minors -- ideal generated by minors
  • Input:
  • p, an instance of class ZZ: the size of minors to compute
  • m, an instance of class Matrix: a matrix between free modules
  • Output:
  • J, an instance of class Ideal: the ideal generated by the p by p minors of the matrix m.
  • Optional arguments :
  • minors(..., First => ...) -- set the first minor to compute
  • minors(..., Limit => ...) -- specify how many to compute
  • minors(..., Strategy => ...) -- choose between Bareiss and Cofactor algorithms
  • Minors are generated in the same order as that used by subsets(ZZ,ZZ).

    i1 : R = ZZ[vars(0..11)];
    i2 : M = genericMatrix(R,a,4,3)

    o2 = | a e i |
         | b f j |
         | c g k |
         | d h l |

                 4       3
    o2 : Matrix R  <--- R
    i3 : transpose generators minors(2,M)

    o3 = {-2} | -be+af |
         {-2} | -ce+ag |
         {-2} | -cf+bg |
         {-2} | -de+ah |
         {-2} | -df+bh |
         {-2} | -dg+ch |
         {-2} | -bi+aj |
         {-2} | -ci+ak |
         {-2} | -cj+bk |
         {-2} | -di+al |
         {-2} | -dj+bl |
         {-2} | -dk+cl |
         {-2} | -fi+ej |
         {-2} | -gi+ek |
         {-2} | -gj+fk |
         {-2} | -hi+el |
         {-2} | -hj+fl |
         {-2} | -hk+gl |

                 18       1
    o3 : Matrix R   <--- R
    i4 : subsets(4,2)

    o4 = {{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}}

    o4 : List

    The order is {{0,1},{0,1}}, {{0,2},{0,1}}, {{1,2},{0,1}}, and so on.

    If the minors(..., First => ...) option is not given, the minors are stashed in the matrix under the key m.cache#MinorsComputation{j}. The class of this stashed object is the internal class MinorsComputation.


    [top][index]
    search for: