exteriorPower(ZZ,Matrix) -- exterior power
Synopsis:
Note: we may write exteriorPower_p f instead of
exteriorPower(p,f); see (symbol _,Function,Thing).
i1 : R = ZZ/2[x,y]; |
i2 : f = random(R^3,R^{3:-1})
o2 = | x x x+y |
| y x x+y |
| 0 x+y 0 |
3 3
o2 : Matrix R <--- R |
i3 : exteriorPower_2 f
o3 = | x2+xy x2+y2 0 |
| x2+xy 0 x2+y2 |
| xy+y2 0 x2+y2 |
3 3
o3 : Matrix R <--- R |
The matrix may be a more general homomorphism of modules. For example,
i4 : g = map(coker matrix {{x^2},{x*y},{y^2}}, R^3, id_(R^3))
o4 = | 1 0 0 |
| 0 1 0 |
| 0 0 1 |
o4 : Matrix |
i5 : g2 = exteriorPower(2,g)
o5 = | 1 0 0 |
| 0 1 0 |
| 0 0 1 |
o5 : Matrix |
i6 : target g2
o6 = cokernel | xy x2 0 |
| y2 0 x2 |
| 0 y2 xy |
3
o6 : R-module, quotient of R |