[top][index]
search for:

primaryComponent(Ideal,Ideal) -- find a primary component corresponding to an associated prime

Synopsis:

  • Usage: Q = primaryComponent(I,P)
  • Function: primaryComponent
  • Input:
  • I, an instance of class Ideal: an ideal in a (quotient of a) polynomial ring R.
  • P, an instance of class Ideal: an associated prime of I.
  • Output:
  • Q, an instance of class Ideal: a P-primary ideal of I.
  • Optional arguments :
  • primaryComponent(..., Increment => ...)
  • primaryComponent(..., PrintLevel => ...)
  • primaryComponent(..., Strategy => ...) -- specify a computational strategy
  • Q is top(I + P^m), for sufficiently large m. The criterion that Q is primary is given in Eisenbud-Huneke-Vasconcelos, Invent math, 110, 207-235 (1992).However, we uselocalize(Ideal,Ideal).

    Caveat:

  • Author and maintainer: C. Yackel, cyackel@math.indiana.edu. Last modified June 2000.

    See also:

  • ass Ideal -- find the associated primes of an ideal
  • primaryDecomposition Ideal -- find a primary decomposition of an ideal
  • radical -- compute the radical of an ideal
  • decompose -- irreducible components of an ideal
  • top -- compute the top dimensional components
  • removeLowestDimension -- remove components of lower dimension
  • Code:

         -- ../../../Macaulay2/m2/primdecomp-EHV.m2:293-300
         primaryComponent(Ideal,Ideal) := Ideal => o -> (I,P) -> (
              localizefcn := if o.Strategy === 1 then
                   SYlocalize ass1
              else if o.Strategy === 2 then
                   SYlocalize ass2
              else EHVlocalize;
              (primarycomponent localizefcn)(I,P,o.PrintLevel,
                   o.Increment))

    [top][index]
    search for: