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Abstract

The problem considered in the paper is the joint learning and planning or Reinforcement Learning (RL)
problem for Partially Observable Markov Decision Processes (POMDP) with unknown rewards and dynam-
ics. We formulate an episodic learning problem with partial state knowledge. We then adapt UCRL and
PSRL into heuristics for this episodic POMDP-RL problem in several ways and apply these heuristics to a
adaptations of difficult RL problems into POMDPs. We then present simulation results and analysis.

Formulation

Let (S, A, P,R,Q, p, H, L) be a POMDP where S is the state space, A the action set, P(-|s, a) set of conditional
probabilities between states, R the reward function, €2 the observation set, H the episode length, and E the
number of episodes. For episode ¢ € {1,..., L}, the initial state is drawn from some sy ~ p and we observe
op. Fort € {1...H} we let s¢,af,r{ and o} respectively denote the state, action, reward and observation
at time ¢. Each a; will be computed using a policy pf : © — A that we determine at the start of the
episode according to our algorithm and using the data from the previous ¢ — 1 episodes. We assume that the
underlying MDP is time-homogeneous.
We will consider problems with a finite E, with the goal

In order to make the problem more manageable while still keeping the episodic learning context, we assume
that we know the probability distribution of the state given the observation, i.e. we know O(s|o) = Pr(s; =
sloy = 0). So we are trying to produce optimal behavior in an unknown environment where our ability to
measure our state is imperfect, but imperfect in an understood way. It is unclear if we have any hope of
learning without making other assumptions.

In the problems we consider in this work, €2 is finite, but some of our adaptations of UCRL and PSRL
could be applied to a continuous observation set, provided the state space is still discrete.

Due to the independence of the starting state of an episode from the previous episodes, 6f = (0}, at) is a
Markov chain with respect to the filtration generated by the first £ — 1 episodes. By augmenting the state
space to include all observation-action sequences of length at most H, we obtain a typical reinforcement
learning problem. Unfortunately we introduce the curse of dimensionality- the augmented state space will
have size O(|Q*|A|"), meaning that RL algorithms are likely to be intractable for interesting H. Our hope
is that by adapting the RL algorithms to shorter histories or representing history in a condensed state, we
can attain strong performance and high tractability.



Related Approaches

Early work on POMDP in RL in [6] focused on defining a @ to 2 x A using the empirical P and R and
Monte-Carlo estimations, but require knowledge about average rewards and offer no tractability guarantees
or experimental results. Work on the “Consistent Representation” method presented in [9] seeks to control
a Hidden Markov Model optimally using an internal state space which is Markov, and then applies e-greedy
learning methods to the internal space. Similarly there are no tractability or learning rate guarantees for
this method, and a generalization of e-greedy approaches seems unlikely to offer good performance because
such algorithms learn exponentially in the episode length H on certain classes of RL problems

Belief-Augmentation

The belief state is a sufficient statistic for optimal control [2]. There is a body of recent work [3,4] that
attempts to solve the POMDP RL problem by storing a belief state b;, a posterior distribution over the states
given all history. The belief state contains history implicitly and is updated using Bayes’ Rule. Bellman’s
Equation takes a convenient form for these problems:

Q" (b, a) = R(bs,a) + Y P(osp1 = olbr, )V (b)),
0€N

where V*(b}1,) is the value of our expected future belief under a; = a and 0¢41 = 0. Computing V*(b;%)
is often intractable. In a later section we show that even in a two-state, two-action problem with known
transition and reward dynamics, the exact solution for a POMDP can be intractable for large H.

Ross et al. [8] has an extended survey on Bayesian adaptive POMDP problems and showed that the
problem of learning POMDPs can be reduced to a learning MDPs by augmenting the state-space with belief
about state and model. They provided theoretical guarantees for approximate approaches which discretize
the belief state space. Also in the paper are heuristics to update the belief state which have informed our
heuristics in this work.

In [3], the intractability of computing V* is handled with a point estimator, and the learning problem is
explored in a different context where O is not known but there is an oracle/expert that the system can query
at any time to get the optimal action. While this work may be effective in implicitly learning complex tasks
already solved by other systems, it cannot be applied to a system whose optimal control is unknown.

Tree-Based Algorithms

McCallum describes an algorithm in [5] for learning the underlying state space by using a tree representation
for the space of possible histories 6f. Such a representation yields an approximation of the state space as
the leaves of this tree. This approach is expanded on in [4] in the context of making Belief-Augmentation
more tractable for a traditional RL problem. Rather than storing history implicitly using Bayes’ rule as in
the formulation above, these approaches try estimate the solutions to the belief update by using the tree

structure to represent dependencies.

PSRL Adaptations

Thompson sampling or posterior sampling has been shown to be an effective method at solving RL problems
[7]. At the start of each episode, the unknown transition probabilities and rewards are sampled from a prior
and the optimal policy for this MDP is implemented through the episode. The rewards and transitions
observed for states and actions are then used to update the priors of the reward and transition probabilities
for the succeeding time steps.

The challenge in adapting PSRL for learning and planning in POMDPs is twofold :

e Updating the priors for the reward and transition probabilities given partial observations of the state.
This could also be restated as the problem of updating counts or statistics used for updating priors
given observations from an episode.

e Implementing a policy for partially observed states obtained from the above MDP. This is the POMDP
problem.



Similar to POMDP solutions, we maintain an approximate belief state b; at each time instant of the
episode representing the probability of being in a particular state given the model M and past history of
observations and actions, i.e. P(s; | M,al, 0!) = b;(s;). We use the belief state to update counts for updating
priors over the model for the next episode as well as choosing actions in the current episode where we have
already sampled a model.

PSRL-POMDP algorithm

The algorithm is described in Alg. and individual parts of the algorithm explained here.

Algorithm 1 PSRL-POMDP
for {=1:FE do
Sample Ry(s,a), Pi(sy | s,a) from priors using counts, rewards, etc.
Find optimal Q(s,a) for model M’
for t=1:H do
observe of
bl < UPDATE(b!_,,0f, ar_1)
a; < OPTACT (b, Q(-,))
end for
end for

Sampling the model

A natural prior to maintain for transition probabilities over the finite state problem is the Dirichlet prior which
is parametrized by number of transitions made from an (s, a) tuple to next state sy. Priors such as Jeffrey’s,
Beta-Bernoulli or Normal-Gamma depending on prior knowledge are natural priors to use for the stochastic
reward for each state and action pair. These are parametrized typically by the number of observations, mean
and variance. At the start of every episode, the rewards R(s,a) and transition probabilities P(s; | s,a) are
sampled from the priors to obtain an MDP M’. The optimal solution for the MDP is found through dynamic
programming and Q functions obtained.

Choosing action

Given current belief state b; at each time instant and the Q functions Q(s, a) of sampled model, choosing the
action amounts to solving the POMDP problem. While solving the exact problem is not feasible especially
for large state and action sequences, some approximate approaches are:

1. Most Likely State :
a; = argmax Q(argmax b.(s), a)

2. Sample from belief state :

s bt
a; = argmaxQ(s,a)
3. Polling :
ds = bi(s)argmax Q(s,a)
a
ap = argmabet(s)la(és)

4. Minimizing expected cost :

a; = argmax Z b:(s)Q(s,a)



Updating the belief state

Since we do not know the exact transition probabilities, the belief state we are maintaining at each time
instant are approximate. Here are some approximate approaches to updating the belief state:

1. Using observation only :
bi(s) x P(o; | s)
2. Combining history and observation :

be(s) < P(o | ) Z]P’(s | s—,ai—1)bi—1(s-)

S

Both these methods rely on Bayes’ rule for updating the belief state. Apart from just the observation,
the latter also relies on prior belief and transition probabilities. Instead of using the sampled model, the
expected transition probabilities which are proportional to the transition counts are more appropriately used.

Updating counts

If we are working with the most likely state or a sampled state and choose an action based on that, we can
update the transition counts to the most likely (or sampled) state in the next time instant.

Another method to update counts would be to factor in the belief state more explicitly. For instance,
updating the transition count can be performed as,

n(s,a,ss) < n(s,a,s4) + be(s)bes1(s4).
The mean reward can be similarly updated as,

R, (s,a)n(s,a)+ b(s)re
n(s,a) + b(s)

)

R, (s,a) +

where n(s,a) =, n(s,a,s¢).

UCRL Adaptations

Choosing actions

An intuitive extension of UCRL to the POMDP case would be to be optimistic over a range of “reasonable”
belief states in addition to the optimistic optimization done over plausible model. Two problems with this
approach are that the third layer of optimism is almost always intractable, and that we cannot expect a
confidence interval over belief states to contract to a single state in the limit: the state cannot be learned in
most practical or interesting POMDPs.

Given that a belief state is a sufficient statistic for POMDPs, however, it makes sense to be optimistic
with respect to our current approximation of the belief state Ef Let M* denote the set of plausible MDPs
given our approximations P and R of the empirical transition dynamics and reward distributions at episode
¢.Let Qf be the optimistic approximation of Q for episode £:

Q%(s,a) = max R(s,a)+ ZP(S’\S, a)V(s')
P,Re Mt o

where P and R are constrained using the typical confidence set bounds, as in [1], and V (s') = max, Q*(s', a).
At the start of each episode we will compute this optimistic ) using our past data with the Opt@Q function.
Optimizing Q over M is tractable because it is a linear program.

As in PSRL, we explore three ways to chose our actions:

8 « argmax Pr(s{ = s | b}), af « argmax Q*(5{,a) (1)
s a

at « argmax Pr (a = argmax Q°(st,d’) | Bf) . (2)

at « argmax Z be(s) (3)

In the pseudo code for these algorithms we let OPTACT(bf, Q* ) return the output of one of these procedures.



Updating Statistics

Although UCRL uses statistics (counts, model estimations) differently than PSRL, the choices for updating
remain the same- we can choose to update our approximation of the belief state by using only recent infor-
mation or by repeatedly applying Bayes’ rule at each time step, and we can update our counts by acting as
if the most likely state were the true state or by using our approximation of the belief state to work in our
uncertainty about the true transitions. In the pseudocode below, D! denotes all relevant data from episode
¢ (belief states, observations, actions, etc.), and UPDATEDATA(]E’E, ]:ZZ,DK) returns P! and R according
to whichever method we have chosen to process the data.

Similarly, we let UPDATEBELIEF(E??I, at_,,0!) return our new estimate of the belief state l;f 11 according
to whichever method we have chosen for updating our approximate belief state.

Pseudocode

Algorithm 2 UCRL-POMDP

for /=1:F do
Q' + OPTQ(MY)
for t=1:H do
observe ofH
af <+ OPTACT(b,_,,-)
bf + UPDATEBELIEF (b{_4,af,0f,,")
M < UPDATEDATA(DY)
end for
end for

Exact solutions

Consider the 2 state POMDP-RL with S = {1,2}, O = S, A = {a,b}.

P(ot | st)
P(8t+1 =2 I st,at)

R | St, Gt

iid
~Y

01,1 (0r) + (1 = 0)Ls\s,(0r)

at
pst

Bern(rg!)

Here p., r: are unknown parameters and J is known.
Let us consider a Bayesian approach to solving the problem. We consider beta-Bernoulli priors for

rewards (rf//;a/ﬁ), location (l;/5) and transition probabilities for all actions and states (p(ll;;a/ﬁ). The

Bellman equation can be written as,

¢ = > Plz)PrE (22)PpE, (23)07 (1
z1€{1,2},
22,23€{,B}?,
246{0,1}
V ) b 7l = )
(ri.pl) max. q

- 6)1_Z4V(r§1,22 + 1»1921?23 + 17123 — ZZ1 + 24, lZ_3 A 12_1)

where operator PZ(a) = Zo/(Za + Z3) for a beta-bernoulli pair of variables Z, g. Here I, =1, and lg = lo
and 1 = & = 2 = 3. Essentially, given our current priors on transition and reward probabilities and belief
about location as states of our value function, we update these priors independently given our expected
observation and action. Planning is done based on this. For large state spaces or episode lengths, planning

over such a horizon can become intractable.

Results

We tested our heuristics on an example inspired by the riverSwim problem or the MDP studied in class.
The state space are the integers 1,...,S5 (we use S to denote both the number of states and set of states,
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Figure 1: Performance of adaptations with various parameters. On the left side are performance of UCRL
algorithms and on the right are PSRL algorithms.

but the distinction should be clear), and there are two actions at each state. At state i, one of the actions is
randomly selected to go to state i + 1 (or S if already at S), and the other leads to ¢ — 1 (or 1). There is a
reward of 1 for any action taken at state S. All other rewards are zero. For an observation error of e, the
distribution of observation error (unless varied) was O(i|s) = 1 — €, while O(i + 1]s) = O(i — 1]s) = €/2.

In order to test the performance of our adaptations with respect to different aspects of the POMDP RL
problem, we ran several flavors of PSRL-POMDP and UCRL-POMDP while varying

e The number of states : This is a proxy for how the algorithms perform with delayed reward. Notions
of planning to learn will be tested here.

e The length of each episode : This is a measure of how much flexibility a system has. If H = S, is the
system makes a mistake based on faulty observations at any stage, it will not generate reward that
episode and has a smaller window to learn.

e The noise “intensity”: the probability for which the observation is not the actual state

e The noise shape: The noisy observation is drawn from a wider distribution around the actual state
centred at the actual state.

The left column corresponds to UCRL-POMDP and the right column to PSRL-POMDP

For both experiments, “ML” refers to the max likelihood of current state, and refers to using a belief
state with a point mass on the most likely state given the most recent observation. “Mix” refers to using
only the current observation for a belief state. “Bayes” refers to the full Bayesian update for all belief states
and histories.



When held constant relative to the experiment at hand, the parameters were £ = 1000,5 = 10, H =
S+ 10, and € = .3.

In general the results are relatively consistent between the two approaches, and perform well even com-
pared to the solutions of the underlying MDPs.

In the number of states experiments, we note that optimal rewards at each time period are 11, and for
the lower numbers of states, all versions of both algorithms have near optimal control. As the state numbers
increase, we see an expected performance drop off because the system becomes more difficult to learn because
rewards are at greater delay. The relative flexibility afforded by the larger episode length also drops away
and the learner is more susceptible to observation error relative to correct ones in each episode. We see that
generally, the bayesian approach outperform the more “myopic” ones, especially in the tail.

In the episode length row, we fix S at 10 and increase H. Thus the optimal control yields rewards of
H — S+ 1, and we see that both adaptations in all of their flavors are performing near optimally even for
smaller H, and seem to be obtaining nearly all of the rewards available as H increases.

In the noise intensity row, we vary €, the observation error. This corresponds to putting less weight on the
underlying state when drawing the observation. We see a dip in performance around 2/3, which makes sense
considering that the distribution of the observation has maximum entropy at this e. For higher observational
errors, the bayesian approaches actually improve their performance, which may signify that they are learning
to turn the drop in mass at the actual state as a signal for where that state really is.

Finally, in the row for noise shape, we experiment with increasing the number of possible observations
for each state. These probability distributions take on a “triangular” shape with the mode at the underlying
state. As expected, as the number of underlying states decreases, performance of all metrics decreases, but
surprisingly the Bayesian approaches do not seem to scale better as the noise is spread across the state space.

These results offer insight into when various heuristics can be used. For problems which do not require
extensive planning to learn or when observation error is benign, simply using the maximum likelihood estimate
is sufficient for updating beliefs and choosing which action to take given observations.

Our results also indicate that it may not be possible to perfectly learn the transition and reward proba-
bilities if observations are noisy.

Conclusions and Future Work

In this work, we adapted UCRL and PSRL algorithms for simultaneous model-based planning and learning
in POMDPs. We did this by focussing on various tractable heuristics for updating belief given current
observation and history, choosing action based on belief of the model parameters and state belief, and finally
updating knowledge of model parameters.

Performance of these heuristics was generally strong relative to performance of PSRL and UCRL on the
underlying MDPs with completely observable state. It is unclear to what extent this signifies that successful
ideas in RL will extend generally to the POMDP RL setting. Because our example was in many senses
”]earnable” even with the observation error, it may be that the success of the adaptations came from the
nature of the noise that we applied.

Future work on developing theoretical bounds on performance loss as a function of observation error for a
class of POMDPs(even if the underlying model is known) may be useful in developing bounds for performance
loss in POMDP RL relative to RL on its underlying POMDP. These could help separate the losses from noisy
observations confounding the algorithm from what it intends from the losses due to difficulty learning in a
noisy environment.
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