

Fundamental Estimation in Autoregressive Processes with Compressive Measurements: Proofs

Milind Rao, Tara Javidi, Yonina Eldar, Andrea Goldsmith

APPENDIX A

In this section, we focus on showing how VAR processes can be reconstructed from low dimensional random projections.

At each point in time for state x_t , we are given two random low dimensional projections $z_t^i = \Psi_t^i x_t$, $i \in \{1, 2\}$ where the rank of matrix Ψ_t^i is $m \ll n$.

We saw that we could write $z_t^1 = \eta_t x_t + \sqrt{\eta_t(1 - \eta_t)} R_t^1 x_t$ and $z_t^2 = \omega_t x_t + \sqrt{\omega_t(1 - \omega_t)} R_t^2 x_t$. Here R_t^i are rotation matrices that are uniformly distributed on the hypersphere and perpendicular to x_t . $\eta_t, \omega_t \stackrel{\text{iid}}{\sim} \text{Beta}\left(\frac{m}{2}, \frac{n-m}{2}\right)$.

Consider the estimate of the covariance matrix,

$$\begin{aligned}\hat{\Sigma}^k &= \frac{n^2}{(T-k)m^2} \sum_{t=1}^{T-k} z_t^1 z_{t+k}^{2\top} \\ &= \frac{n^2}{(T-k)m^2} \sum_{t=1}^{T-k} \eta_t \omega_{t+k} x_t x_{t+k}^\top + \\ &\quad \sqrt{\eta_t \omega_{t+k} (1 - \omega_{t+k}) (1 - \eta_t)} R_t^1 x_t x_{t+k} R_{t+k}^{2\top} + \\ &\quad \sqrt{\eta_t (1 - \eta_t)} \omega_{t+k} R_t^1 x_t x_{t+k}^\top + \\ &\quad \sqrt{\omega_{t+k} (1 - \omega_{t+k})} \eta_t x_t x_{t+k}^\top R_{t+k}^{2\top} \\ &= P_1 + P_2 + P_3 + P_4\end{aligned}$$

It can be seen that,

$$\begin{aligned}\mathbb{E}[P_1] &= \mathbb{E}\left[\frac{1}{T-k} \sum_{t=1}^{T-k} x_t x_{t+k}^\top\right] \\ \mathbb{E}[P_2] &= \mathbb{E}[P_3] = \mathbb{E}[P_4] = 0\end{aligned}$$

The former is because $\mathbb{E}[\eta_t] = \mathbb{E}[\omega_t] = m/n$ and the latter is because R_t^i is a symmetric random rotation matrix.

The difference between the mean of term P_1 and the true covariance matrices is bounded as

$$\|\mathbb{E}[P_1] - \Sigma^k\|_2 \leq \frac{\sigma_{\max}^k}{(1 - \sigma_{\max}^2)(T-k)} \frac{\|Q_w\|_2}{(1 - \sigma_{\max}^2)}.$$

M. Rao and A. Goldsmith are with the Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305, USA (e-mail: milind@stanford.edu, andrea@ee.stanford.edu).

T. Javidi is with the Dept. of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA (e-mail: tjavidi@ucsd.edu).

Y. Eldar is with the Dept. of Electrical Engineering Technion, Israel Institute of Technology, Haifa 32000, Israel (email:yonina@ee.technion.ac.il)

This is because $\Sigma^k = \mathbb{E}[x_t x_{t+k}^\top] = (\sum_{i=0}^{\infty} A^i Q_w A^{i\top}) A^{k\top}$.

$$\begin{aligned}\mathbb{E}[P_1] &= \mathbb{E}\left[\frac{1}{T-k} \sum_{t=1}^{T-k} x_t x_{t+k}^\top\right] \\ &= \frac{1}{T-k} \sum_{t=1}^{T-k} \sum_{i=0}^{\infty} A^i Q_w A^{i+k\top}\end{aligned}$$

$$\begin{aligned}\|\mathbb{E}[P_1] - \Sigma^k\|_2 &\leq \frac{1}{T-k} \sum_{t=1}^{T-k} \sum_{i=t}^{\infty} \|Q_w\|_2 \sigma_{\max}^{2i+k} \\ &\leq \frac{\|Q_w\|_2 \sigma_{\max}^k}{(1 - \sigma_{\max}^2)(T-k)} \sum_{t=1}^{T-k} \sigma_{\max}^{2t} \\ &\leq \frac{\sigma_{\max}^k}{(1 - \sigma_{\max}^2)(T-k)} \frac{\|Q_w\|_2}{(1 - \sigma_{\max}^2)}\end{aligned}$$

This quantity is zero if the system is initiated from the stationary distribution.

We create stacked vectors of noise $W = [w_0 | w_1 | \dots | w_T]$. Consider $\Phi \in \mathbf{R}^{nT \times n(T)}$, $\Gamma_i \in \mathbf{R}^{T \times nT}$

$$\begin{aligned}\Phi &= \begin{bmatrix} \mathbf{I} & \dots & \mathbf{0} \\ A & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ A^{T-1} & \dots & \mathbf{I} \end{bmatrix} \\ \Gamma_t &= [\mathbf{0}_{n \times n} \quad \dots \quad I \quad \dots \quad \mathbf{0}_{n \times n}]\end{aligned}$$

We can define binary matrices $\{J_l\}_{l \in [T]}$ of dimension $T \times T$. J_l denotes locations in block matrix Φ where A^l is present. J_l has at most 1 non-zero entry in each row. Hence, $\|J_l\|_2 \leq 1$.

$$\begin{aligned}\Phi &= \sum_{l=0}^T J_l \otimes A^l && \text{[Kronecker product]} \\ \Rightarrow \|\Phi\|_2 &\leq \sum_{l=0}^{\infty} \|J_l\|_2 \|A^l\|_2 && \text{[Norm over } \otimes\text{]} \\ \Rightarrow \|\Phi\|_2 &\leq \sum_{l=0}^{\infty} \sigma_{\max}^l = \frac{1}{(1 - \sigma_{\max})}\end{aligned}$$

Using these, we can write $x_t = \Gamma_t \Phi W$. Writing

$$P_i = \frac{n^2}{(T-k)m^2} \sum_{t=1}^{T-k} p_t^i R_{i,t}^1 x_t x_{t+k}^\top R_{i,t+k}^{2\top}, \quad (1)$$

P_i	$R_{i,t}^1$	$R_{i,t+k}^2$	p_t^i
P_1	I	I	$\eta_t \omega_{t+k}$
P_2	R_t^1	R_{t+k}^2	$\sqrt{\eta_t(1-\eta_t)\omega_{t+k}(1-\omega_{t+k})}$
P_3	R_t^1	I	$\sqrt{\eta_t(1-\eta_t)\omega_{t+k}}$
P_4	I	R_{t+k}^2	$\eta_t \sqrt{\omega_{t+k}(1-\omega_{t+k})}$

TABLE I: Values of the terms in (1).

where terms are detailed in Table I.

We observe that $(p_t^i)^2 \leq \eta_t \omega_{t+k}$. We now note for $\alpha, \beta \in \mathbf{R}^n$, $\|\alpha\|_2 = \|\beta\|_2 = 1$.

$$\begin{aligned} \alpha^\top P_i \beta &= \frac{n^2}{(T-k)m^2} \sum_{t=1}^{T-k} \alpha^\top p_t^i R_{i,t}^1 x_t x_{t+k}^\top R_{i,t+k}^{2\top} \beta \\ &= W^\top \Phi^\top \left(\frac{n^2}{m^2(T-k)} \sum_{t=1}^{T-k} p_t^i \Gamma_{t+k}^\top R_{i,t+k}^{2\top} \beta \alpha^\top R_{i,t}^{1\top} \Gamma_t \right) \Phi W \\ &= W^\top \Phi^\top B \Phi W \end{aligned}$$

$W = Q_w^{1/2} z$ where $z \sim \mathcal{N}(0, I)$. Using this, $\alpha^\top P_i \beta = z^\top L z$.

$$\begin{aligned} \|L\|_F^2 &= \|Q_w^{1/2} \Phi^\top B \Phi Q_w^{1/2}\|_F^2 \\ &\leq \|Q_w\|_2^2 \|\Phi\|_2^4 \frac{n^4}{(T-k)^2 m^4} \sum_{t=1}^{T-k} \eta_t \omega_{t+k} \|R_{i,t+k}^{2\top} \beta \alpha^\top R_{i,t}^{1\top}\|_F^2 \\ &\leq \frac{\|Q_w\|_2^2 n^2}{(1-\sigma_{\max})^4 m^2 (T-k)} + o(T^{-1}) \end{aligned} \quad (2)$$

The final step is by using the Hoeffding bound for the convergence of $\frac{n^2}{m^2(T-k)} \sum_{t=1}^{T-k} \eta_t \omega_{t+k}$. Each term in the summation is bounded by $[0, 1]$ and is subgaussian 1/4. By Hoeffding bound with probability $> 1 - \delta/5$, $\frac{1}{(T-k)} \sum_{t=1}^{T-k} \eta_t \omega_{t+k} \leq \mathbb{E}[\eta_t \omega_{t+k}] + \sqrt{\frac{\log(5/\delta)}{2(T-k)}} \leq m^2/n^2 + \mathcal{O}(T^{-1/2})$. Let this event be Err^c .

For the concentration result, consider eigenvalues of symmetric matrix $L^s = \frac{L+L^\top}{2}$ be λ_i . We have $\sum_i \lambda_i^2 = \|L^s\|_F^2 \leq L_F^2$. Diagonalizing L^s and because of the circularly symmetric nature of standard gaussian vector

$$\begin{aligned} z^\top L z - \mathbb{E}[z^\top L z] &= \sum_i \lambda_i (z_i^2 - 1) \\ \Pr(\sum_i \lambda_i (z_i^2 - 1) \geq \epsilon) &\leq e^{-t\epsilon} \prod_i \mathbb{E}[\exp(t\lambda_i(z_i^2 - 1))] \\ &\leq \exp(-t\epsilon) \prod_i \frac{e^{-t\lambda_i}}{\sqrt{1-2t\lambda_i}} \\ &\leq \exp\left(-t\epsilon + 2t^2 \sum_i \lambda_i^2\right) \end{aligned}$$

The first inequality holds when $t \geq 0$. The second holds using MGF of χ^2 random variable when $t\lambda_i \leq \frac{1}{2}$. The last inequality holds as $\log(1-x) \geq -x - x^2$ when $x \leq \frac{1}{2}$ or whenever $t\lambda_i \leq \frac{1}{4}$. We take $t = \frac{\epsilon}{4L_F^2}$ to obtain that conditioned on Err^c , with probability $> 1 - \delta/5$,

$$|\alpha^\top (P_i - \mathbb{E}[P_i]) \beta| \leq \sqrt{\frac{8 \log(10/\delta)}{T-k}} \frac{n \|Q_w\|_2}{m(1-\sigma_{\max})^2} + o(T^{-1/2}). \quad (3)$$

We now present the proof of Theorem 3 which combines the above results.

Proof. Max norm bound Observe

$$\begin{aligned} \|\Sigma^k - \hat{\Sigma}^k\|_{\max} &\leq \|\hat{\Sigma}^k - \mathbb{E}[\hat{\Sigma}^k]\|_{\max} + \|\mathbb{E}[\hat{\Sigma}^k] - \Sigma^k\|_{\max} \\ &\leq \sum_{i=1}^4 \|P_i - \mathbb{E}[P_i]\|_{\max} + \mathcal{O}(T^{-1}). \end{aligned}$$

We use (3) to get

$$\begin{aligned} \alpha^\top (\hat{\Sigma}^k - \Sigma^k) \beta &\leq 4 \sqrt{\frac{8 \log(10/\delta)}{T-k}} \frac{n \|Q_w\|_2}{m(1-\sigma_{\max})^2} + o(T^{-1/2}) \end{aligned}$$

when $\|\alpha\|_2, \|\beta\|_2 \leq 1$.

Now using $\alpha = e_i$ and $\beta = e_j$ we obtain the convergence result for each element $|\hat{\Sigma}_{ij}^k - \Sigma_{ij}^k|$ and taking union bound over the n^2 choices, we obtain the result for the max bound.

ℓ_2 norm bound Let us define $\Delta \Sigma^k = \hat{\Sigma}^k - \Sigma^k$. We consider a covering set \mathcal{A} such that for any $\alpha \in \mathbf{R}^n$ such that $\|\alpha\|_2 \leq 1$, there exists $\alpha' \in \mathcal{A}$ with $\|\alpha'\|_2 \leq 1, \|\alpha - \alpha'\|_2 \leq \epsilon$. From covering set theory, we can construct such a set with $|\mathcal{A}| \leq (3/\epsilon)^n$. Applying union bound, we find

$$\begin{aligned} \max_{\alpha, \beta \in \mathcal{A}} \alpha^\top \Delta \Sigma^k \beta &\leq 4 \sqrt{\frac{8(2n \log(3/\epsilon) + \log(6/\delta))}{(T-k)}} \times \\ &\quad \frac{n \|Q_w\|_2}{m(1-\sigma_{\max})^2} + o((T-k)^{-1/2}) \end{aligned}$$

Now, we see

$$\begin{aligned} \|\Delta \Sigma^k\|_2 &= \max_{\alpha, \beta} \alpha^\top \Delta \Sigma^k \beta \\ &\leq \max_{\alpha', \beta' \in \mathcal{A}} \alpha'^\top \Delta \Sigma^k \beta' + (\alpha - \alpha')^\top \Delta \Sigma^k \beta' \\ &\quad + \alpha^\top \Delta \Sigma^k (\beta - \beta') \\ &\leq \max_{\alpha', \beta' \in \mathcal{A}} \alpha'^\top \Delta \Sigma^k \beta' + 2\epsilon \|\Delta \Sigma^k\|_2 \\ \Rightarrow \|\Delta \Sigma^k\|_2 &\leq \frac{1}{1-2\epsilon} \max_{\alpha', \beta' \in \mathcal{A}} \alpha'^\top \Delta \Sigma^k \beta' \end{aligned}$$

We use $\epsilon = 1/4$ to obtain the final result. \square

Subsampling case The above proof has been derived for the compressive measurement case but it also holds for the subsampling case. Here $z_t^i = \Psi_t^i x_t, i \in \{1, 2\}$ where Ψ_t^i is a binary matrix with m ones and $n-m$ zeros.

$$\begin{aligned} \hat{\Sigma}^k &= \frac{n^2}{m^2(T-k)} \sum_{t=1}^{T-k} \Psi_t^1 x_t x_{t+k}^\top \Psi_{t+k}^{2\top} \\ &\quad \alpha^\top \hat{\Sigma}^k \beta \\ &= W^\top \Phi^\top \left(\frac{n^2}{m^2(T-k)} \sum_{t=1}^{T-k} \Gamma_{t+k}^\top \Psi_{t+k}^{2\top} \beta \alpha^\top \Psi_t^1 \Gamma_t \right) \Phi W \\ &= W^\top \Phi^\top B \Phi W \end{aligned}$$

Like in the earlier case, we need to bound $\|B\|_F^2$

$$\|B\|_F^2 \leq \frac{n^4}{(T-k)^2 m^4} \sum_{i,j} \beta_i^2 \alpha_j^2 \sum_{t=1}^{T-k} (\Psi_{t+k}^2)_{ii} (\Psi_t^1)_{jj}$$

From Hoeffding bound, with probability $> 1 - \delta/5$ for all values of i, j ,

$$\begin{aligned} \frac{1}{T-k} \sum_{t=1}^{T-k} (\Psi_{t+k}^2)_{ii} (\Psi_t^1)_{jj} &\leq \mathbb{E}[(\Psi_{t+k}^2)_{ii} (\Psi_t^1)_{jj}] + \mathcal{O}\left(\frac{\log n/\delta}{\sqrt{T-k}}\right) \\ &\leq \frac{m^2}{n^2} + \mathcal{O}(T^{-1/2} \log n) \end{aligned}$$

The rest of the proof is the same as upper bound (2) holds.

APPENDIX B

In this section, we estimate the transition matrix and covariance matrix under various constraints.

We derive convergence guarantees for the covariance matrix under structural assumptions.

Sparsity Let the set $\mathcal{U} = \{\Sigma : \sum_j |\Sigma_{ij}|^q \leq s \forall i\}$. We assume $\Sigma^k \in \mathcal{U}$. First we suppose $U_u(\hat{\Sigma}^k - \Sigma^k)$ is symmetric.

Consider the thresholding operation $U_u(\cdot)$ defined as

$$(U_u(\Sigma))_{ij} = \Sigma_{ij} \mathbf{1}(|\Sigma_{ij}| \geq u).$$

We observe,

$$\|U_u(\hat{\Sigma}^k) - \Sigma^k\|_2 \leq \|U_u(\hat{\Sigma}^k) - U_u(\Sigma^k)\|_2 + \|U_u(\Sigma^k) - \Sigma^k\|_2$$

The second term can be bounded as

$$\begin{aligned} \|U_u(\Sigma^k) - \Sigma^k\|_2 &\leq \max_i \sum_j |\Sigma_{ij}^k| \mathbf{1}(|\Sigma_{ij}^k| \leq u) \\ &\leq \max_i u \sum_j |\Sigma_{ij}^k/u|^q \mathbf{1}(|\Sigma_{ij}^k| \leq u) \\ &\leq u^{1-q} s \end{aligned} \tag{4}$$

The first term needs a more detailed analysis as

$$\begin{aligned} &\|U_u(\hat{\Sigma}^k) - U_u(\Sigma^k)\|_2 \\ &\leq \max_i \sum_j |(U_u(\hat{\Sigma}^k) - U_u(\Sigma^k))_{ij}| \\ &\leq \max_i \sum_j |\Sigma_{ij}^k - \hat{\Sigma}_{ij}^k| \mathbf{1}(|\Sigma_{ij}^k| \geq u, |\hat{\Sigma}_{ij}^k| \geq u) \\ &\quad + \max_i \sum_j |\Sigma_{ij}^k| \mathbf{1}(|\Sigma_{ij}^k| \geq u, |\hat{\Sigma}_{ij}^k| \leq u) \\ &\quad + \max_i \sum_j |\hat{\Sigma}_{ij}^k| \mathbf{1}(|\Sigma_{ij}^k| \leq u, |\hat{\Sigma}_{ij}^k| \geq u) \\ &= \text{I} + \text{II} + \text{III} \end{aligned}$$

I can be bounded with high probability as,

$$\begin{aligned} \text{I} &\leq \|\Delta \Sigma^k\|_{\max} \max_i \sum_j \mathbf{1}(|\Sigma_{ij}^k| \geq u) \\ &\leq \gamma(\delta) \max_i \sum_j (\Sigma_{ij}^k/u)^q \mathbf{1}(|\Sigma_{ij}^k| \geq u) \\ &\leq \gamma(\delta) s u^{-q} \end{aligned} \tag{5}$$

For term II, we have,

$$\begin{aligned} \text{II} &\leq \max_i \sum_j \left(|\Delta \Sigma_{ij}^k| + |\hat{\Sigma}_{ij}^k| \right) \mathbf{1}(|\Sigma_{ij}^k| \geq u, |\hat{\Sigma}_{ij}^k| \leq u) \\ &\leq (\gamma(\delta) + u) k u^{-q} \end{aligned}$$

where we have used the bound in (5) and recognised that each term in the second summation is bounded by u .

Term III can be written in two parts

$$\begin{aligned} \text{III} &\leq \max_i \sum_j [|\Delta \Sigma_{ij}^k| + |\Sigma_{ij}^k|] \mathbf{1}(|\Sigma_{ij}^k| \leq u, |\hat{\Sigma}_{ij}^k| \geq u) \\ &\leq \max_i \sum_j |\Delta \Sigma_{ij}^k| \mathbf{1}(|\Sigma_{ij}^k| \leq u, |\hat{\Sigma}_{ij}^k| \geq u) + s u^{1-q} \\ &\leq \gamma(\delta) \max_i \sum_j \mathbf{1}(|\Sigma_{ij}^k| \geq u - \gamma(\delta)) + s u^{1-q} \\ &\leq \gamma(\delta) \frac{u^{-q}}{(1 - \gamma(\delta)/u)^q} + s u^{1-q} \end{aligned}$$

where (4) has been used.

We now use $u = 2\gamma(\delta)$ to obtain the bound. if Σ^k is not symmetric. We bound $\|\Delta \Sigma^k\|_1, \|\Delta \Sigma^k\|_\infty$ as above and use $\|\Delta \Sigma^k\|_2^2 \leq \|\Delta \Sigma^k\|_1 \|\Delta \Sigma^k\|_\infty$.

Additionally, if $\lambda_{\min}(\Sigma^k) \geq \epsilon_0$, we obtain the result for the inverse as well as $\|(U_u(\hat{\Sigma}^k))^{-1} - (\Sigma^k)^{-1}\|_2 = \Omega(\|U_u(\hat{\Sigma}^k) - \Sigma^k\|_2)$

Dense Transition Matrix

With probability greater than $1 - 2\delta$ both, maximum value of $\Delta \Sigma^0 = \hat{\Sigma}^0 - \Sigma^0$ and $\Delta \Sigma^1 = \hat{\Sigma}^1 - \Sigma^1$ are less than γ . We have also seen that $\|\Delta \Sigma^0\|_2, \|\Delta \Sigma^1\|_2 \leq \mathcal{O}(\sqrt{n}\gamma)$. As mentioned in [1], we get

$$\|\Delta \Sigma^{0\dagger}\|_2 \leq \|\Sigma^{0\dagger}\|_2^2 \|\Delta \Sigma^0\|_2 \leq \frac{4\sqrt{n}\gamma}{\sigma_{\min}^2}.$$

This is true when $\|\Delta \Sigma^0\|_2 < \lambda_{\min}(\Sigma^0)$ and Σ^0 is invertible.

The error is given by,

$$\begin{aligned} \|\hat{A} - A\|_2 &\leq \|\hat{\Sigma}^1 \tau \hat{\Sigma}^{0\dagger} - \Sigma^1 \tau \hat{\Sigma}^{0\dagger} + \Sigma^1 \tau \hat{\Sigma}^{0\dagger} - \Sigma^1 \tau \Sigma^{0\dagger}\|_2 \\ &\leq (\|\Delta \Sigma^{0\dagger}\|_2 + \|\Sigma^{0\dagger}\|_2) \|\Delta \Sigma^1\|_2 + \|\Sigma^1\|_2 \|\Delta \Sigma^{0\dagger}\|_2 \\ &\leq \frac{4\sigma_{\max} \sqrt{n}\gamma \|\mathcal{Q}_w\|_2}{\sigma_{\min}^2 (1 - \sigma_{\max}^2)}, \end{aligned}$$

completing the proof.

Sparse Transition Matrix

We now obtain results with sparse A . This proof is described in [2] for getting performance bounds on estimate A using the Dantzig selector algorithm with our estimates of Σ^0, Σ^1 .

Let γ be the maximum deviation of empirical covariance matrices as earlier.

We show that $A^\tau = \Sigma^{0\dagger} \Sigma^1$ is a feasible solution with high probability.

$$\begin{aligned} \|\hat{\Sigma}^0 A^\tau - \hat{\Sigma}^1\|_{\max} &\leq \|(\hat{\Sigma}^0 - \Sigma^0) A\|_{\max} + \|(\hat{\Sigma}^1 - \Sigma^1)\|_{\max} \\ &\leq \gamma(\|A\|_1 + 1) = \lambda \end{aligned}$$

Clearly, $\|\hat{A}\|_1 \leq \|A\|_1$ with high probability. We also obtain,

$$\begin{aligned}\|\hat{A} - A\|_{\max} &= \|\Sigma^{0\dagger}(\Sigma^0 \hat{A}^\top - \Sigma^1)\|_{\max} \\ &= \|\Sigma^{0\dagger} \left(\Sigma^0 \hat{A}^\top - \hat{\Sigma}^0 \hat{A}^\top + \hat{\Sigma}^0 \hat{A}^\top - \hat{\Sigma}^1 + \hat{\Sigma}^1 - \Sigma^1 \right)\|_{\max} \\ &\leq 2\lambda \|\Sigma^{0\dagger}\|_1 = \lambda_1\end{aligned}$$

We can use λ_1 as a threshold level for sparsity. We consider each column j separately. Define set $\mathcal{T} = \{i \in [n] | A_{ij} \geq \lambda_1\}$. For convenience, we denote column j of matrix A as a and matrix \hat{A} as \hat{a} . We can write

$$\begin{aligned}\|\hat{a} - a\|_1 &\leq \|\hat{a}_{\mathcal{T}^c}\|_1 + \|a_{\mathcal{T}^c}\|_1 + \|\hat{a}_{\mathcal{T}} - a_{\mathcal{T}}\|_1 \\ &\leq \|a\|_1 + \|a_{\mathcal{T}^c}\|_1 - \|\hat{a}_{\mathcal{T}}\|_1 + \|\hat{a}_{\mathcal{T}} - a_{\mathcal{T}}\|_1 \\ &\leq 2\|a_{\mathcal{T}^c}\|_1 + (\|a_{\mathcal{T}}\|_1 - \|\hat{a}_{\mathcal{T}}\|_1) + \|\hat{a}_{\mathcal{T}} - a_{\mathcal{T}}\|_1 \\ &\leq 2(\|a_{\mathcal{T}^c}\|_1 + \|a_{\mathcal{T}} - \hat{a}_{\mathcal{T}}\|_1)\end{aligned}$$

Consider sum

$$\begin{aligned}s_a &= \sum_i \min\left(\frac{|a_i|}{\lambda_1}, 1\right) \\ &\leq \lambda_1^{-q} \sum_i |a_i|^q = s\lambda_1^{-q}\end{aligned}$$

Now, $\|a_{\mathcal{T}^c}\|_1 \leq \lambda_1 s_a = s\lambda_1^{1-q}$. Also, $\|a_{\mathcal{T}} - \hat{a}_{\mathcal{T}}\|_1 \leq \lambda_1 |T_j| \leq \lambda_1 s_a = s\lambda_1^{1-q}$. Substituting these, we get the bound $\|\hat{A} - A\|_1 \leq 4s\lambda_1^{1-q}$.

Low Rank Transition Matrix

We assume the rank of the transition matrix A is $r \ll n$. We use the following estimator

$$\hat{A} = \operatorname{argmin}_B \langle A^\top, \hat{\Sigma}^0 A^\top - 2\hat{\Sigma}^1 \rangle + \lambda_n \|A\|_*$$

For the analysis, we again denote $\bar{\Delta} = \hat{A} - A$. From the optimality conditions and some algebra,

$$\begin{aligned}\langle \bar{\Delta}^\top, \hat{\Sigma}^0 \bar{\Delta}^\top \rangle &\leq 2\langle \bar{\Delta}^\top, \hat{\Sigma}^1 - \hat{\Sigma}^0 A^\top \rangle + \lambda_n (\|A\|_* - \|\hat{A}\|_*) \\ &\leq (2\|\hat{\Sigma}^1 - \hat{\Sigma}^0 A^\top\|_2 + \lambda_n) \|\bar{\Delta}\|_* \\ &\leq (2(\|\Delta \Sigma^1\|_2 + \sigma_{\max} \|\Delta \Sigma^0\|_2) + \lambda_n) \|\bar{\Delta}\|_*\end{aligned}$$

As shown in appendix earlier, we get $\|\bar{\Delta}\|_* \leq 4\sqrt{2r} \|\bar{\Delta}\|_F$ when $\lambda_n \geq 4(\|\Delta \Sigma^1\|_2 + \sigma_{\max} \|\Delta \Sigma^0\|_2) = 4(1 + \sigma_{\max})\gamma_2$.

Now the optimization problem is convex when $\hat{\Sigma}^0 \succ \mathbf{0}$ and a sufficient condition is when $\|\Delta \Sigma^0\|_2 \leq \gamma_2 < \lambda_{\min}(\Sigma^0)/2$. This happens when we have large enough number of time samples $T = \Omega\left(\frac{128n^3 \log 1/\delta}{\lambda_{\min}^2 m^2} \frac{\|Q_w\|_2^2}{(1-\sigma_{\max})^4}\right)$. Now $\langle \bar{\Delta}^\top, \hat{\Sigma}^0 \bar{\Delta}^\top \rangle \geq \frac{\lambda_{\min}(\Sigma^0)}{2} \|\bar{\Delta}\|_F^2$ which leads to the bound $\|\bar{\Delta}\|_F \leq 12\lambda_n \sqrt{2r}$.

APPENDIX C

In this appendix, we prove fundamental lower bounds on the estimation of the parameters of the autoregressive process.

1) Covariance Matrix: We consider a class of n -dimensional autoregressive processes with $A = 0$ and Σ^0 arising from a class \mathcal{B} of symmetric s -sparse matrices (that have at most s elements in each row and column) detailed below

$$\mathcal{B} = \left\{ \gamma \sum_{1 \leq i < j \leq n} \varepsilon_{i,j} (e_i e_j^\top + e_j e_i^\top) \mathbf{1}_{(k-1)s \leq i < j \leq (k-1)(s+1), k \in [n/s]} \right. \\ \left. + I, \varepsilon \in \{0, 1\}^{n(s-1)/2} \right\}.$$

This is the class of symmetric block-diagonal matrices. For convenience, we assume that s divides n but this assumption can be relaxed. Here $\gamma = c(m^2 T / n^2)^{-1/2}$ is a parameter which we set.

Consider any $\Sigma_\varepsilon \in \mathcal{B}$. Observe that Σ_0 with $\varepsilon = 0$ is also a member. We observe that $\|\Sigma_\varepsilon - \Sigma_0\|_2 \leq s\gamma$. This quantity would be less than 1 guaranteeing that $\Sigma_\varepsilon \succeq 0$ if $T = \Omega(s^2 n^2 / m^2)$.

The Gilbert-Varshamov bound states that there exists a set \mathcal{E} of $n(s-1)/2$ -dimensional binary vectors of size $|\mathcal{E}| > 2^{\frac{n(s-1)}{16}}$ such that for any $\varepsilon, \varepsilon' \in \mathcal{E}$, $\|\varepsilon - \varepsilon'\|_1 > \frac{n(s-1)}{16}$. Using this, there exists a subset \mathcal{B}_ε , $|\mathcal{B}_\varepsilon| > 2^{n(s-1)/16}$, and for any $\Sigma_\varepsilon, \Sigma_{\varepsilon'}$, we have that

$$\begin{aligned}\|\Sigma_\varepsilon - \Sigma_{\varepsilon'}\|_F^2 &\geq \frac{\gamma^2 n(s-1)}{8} > \frac{\gamma^2 n s}{16} \\ \Rightarrow \|\Sigma_\varepsilon - \Sigma_{\varepsilon'}\|_2 &\geq \gamma \sqrt{\frac{s}{4}}\end{aligned}$$

At each point in time, we observe $Z_t = \Psi_t X_t$. Alternatively, we could observe $Y_t = M_t X_t \in \mathbf{R}^m$. In the subsampling case, M_t is Ψ_t with all the zero rows removed. In the *orthogonal compressive measurement scenario*, M_t has rows that are uniformly sampled from the n -dimensional hypersphere and are orthogonal to one another. To reiterate, $\Psi_t = M_t' M_t$ in this case. Now we can observe that $Y_t \sim \mathbb{P}'_{\Sigma^0} = \mathcal{N}(0, M_t \Sigma^0 M_t^\top)$. Also define, $\mathbb{P}_{t,\Sigma}(Z_t) = \mathbb{P}(M_t) \mathbb{P}'_{t,\Sigma}(Y_t)$. As an example, we see that $\mathbb{P}'_{t,\Sigma_0} = \mathcal{N}(0, I_m)$. It follows from independence ($A = 0$) that $\mathbb{P}_\Sigma(Z_1^T) = \prod_{t=1}^T \mathbb{P}_{t,\Sigma}(Z_t)$.

We now find an upper bound for $D_{KL}(\mathbb{P}_{\Sigma_\varepsilon} \|\mathbb{P}_{\Sigma_0})$. We see,

$$\begin{aligned}D_{KL}(\mathbb{P}_{\Sigma_\varepsilon} \|\mathbb{P}_{\Sigma_0}) &= \mathbb{E}_{M_1^T} \mathbb{E} \left[\log \left(\frac{\mathbb{P}_{\Sigma_\varepsilon}(Z_1^T)}{\mathbb{P}_{\Sigma_0}} \right) | M_1^T \right] \\ &= \sum_{t=1}^T \mathbb{E}_{M_t} [D_{KL}(\mathbb{P}'_{t,\Sigma_\varepsilon} \|\mathbb{P}'_{t,\Sigma_0})]\end{aligned}$$

We use the KL divergence between absolutely continuous normal distributions to note

$$\begin{aligned}D_{KL}(\mathbb{P}'_{t,\Sigma_\varepsilon} \|\mathbb{P}'_{t,\Sigma_0}) &= \frac{1}{2} \operatorname{Tr}(M_t \Sigma_\varepsilon M_t^\top) - \frac{1}{2} \log |M_t \Sigma_\varepsilon M_t^\top| - \frac{m}{2} \\ M_t \Sigma_\varepsilon M_t^\top &= I_m + \gamma \sum_{i \neq j} M_t \varepsilon_{i,j} e_i e_j^\top M_t^\top \\ &= I_m + Q_t\end{aligned}$$

Q_t has zero for its diagonal elements in expectation. To see this,

$$\begin{aligned}\mathbb{E}[(M_t e_i e_j^\top M_t^\top)_{kk}] &= \mathbb{E}[(M_t)_{k,i} (M_t)_{k,j}] \\ &= 0 \text{ when } i \neq j.\end{aligned}\quad (6)$$

This is because row $(M_t)_k$ is a uniformly chosen unit vector with $(M_t)_{k,i} = \frac{u_i}{\sqrt{\sum_{i=1}^n u_i^2}}, u_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$. Symmetry dictates (6). Denote its eigenvalues by $\lambda_i, i \in [n]$. We see that $\mathbb{E}[\text{Tr}(Q_t)] = \sum_{i=1}^r \lambda_i = 0$. Also,

$$\begin{aligned}D_{KL}(\mathbb{P}'_{t,\Sigma_\varepsilon} \parallel \mathbb{P}'_{t,\Sigma_0}) &= -\frac{1}{2} \log |I_m + Q_t| \\ &= -\frac{1}{2} \sum_{i=1}^r \log(1 + \lambda_i) \leq \frac{1}{4} \sum_{i=1}^r \lambda_i^2 - 2\lambda_i \\ \Rightarrow \mathbb{E}[\frac{1}{4} \sum_{i=1}^r \lambda_i^2 - 2\lambda_i] &\leq \frac{1}{4} \mathbb{E}[\|Q_t\|_F^2] \leq \frac{\gamma^2 n(s-1)m^2}{2n^2}\end{aligned}$$

For the last step, we use (7) and (8) detailed below.

$$\begin{aligned}\mathbb{E}[\|Q_t\|_F^2] &\leq \gamma^2 \sum_{a,b \in [m]} \mathbb{E} \left[\left(\sum_{i \neq j} \varepsilon_{i,j} (M_t)_{a,i} (M_t)_{b,j} \right)^2 \right] \\ &\leq \gamma^2 \sum_{a,b \in [m]} \sum_{i \neq j} \varepsilon_{i,j}^2 \mathbb{E}[(M_t)_{a,i}^2 (M_t)_{b,j}^2] \\ &\leq \gamma^2 n(s-1)m^2 \mathbb{E}[(M_t)_{a,i}^2 (M_t)_{b,j}^2]\end{aligned}\quad (7)$$

where we have used $\mathbb{E}[(M_t)_{a,i} (M_t)_{b,j}] = 0$. Now, $(M_t)_{a,i}^2 \sim \text{Beta}(\frac{1}{2}, \frac{n-1}{2})$. Using this and cauchy inequality,

$$\begin{aligned}\mathbb{E}[(M_t)_{a,i}^2 (M_t)_{b,j}^2] &\leq \mathbb{E}[(M_t)_{a,i}^4] \\ &\leq \frac{2}{n^2}.\end{aligned}\quad (8)$$

Putting everything together,

$$\begin{aligned}D_{KL}(\mathbb{P}_{\Sigma_\varepsilon} \parallel \mathbb{P}_{\Sigma_0}) &\leq \frac{\gamma^2 T n(s-1)}{2n^2} \\ &\leq c \frac{n(s-1)}{16} = c \log |\mathcal{B}_\varepsilon|\end{aligned}$$

A. Transition Matrix

We consider a class \mathcal{A} of transition matrices that are block diagonal with each block being $s \times s$. The noise matrix $Q_w = I$. Again, for convenience, we assume s divides n but the proof can easily be extended to relax this assumption. The transition matrix comes from class:

$$\begin{aligned}\mathcal{A} &= \\ &\left\{ \gamma \sum_{i,j \in [n]} \varepsilon_{i,j} e_i e_j^\top \mathbf{1}_{(k-1)s \leq i < j \leq (k-1)(s+1), k \in [n/s]} \varepsilon \in \{0, 1\}^{ns} \right\}\end{aligned}$$

Here, $\gamma = cn/m\sqrt{T}$. We require that $\|A_\varepsilon\|_2 \leq \sigma_{\max} < 1$ for the VAR process to be stable as described in Section ???. Seeing $\|A_\varepsilon\|_2 \leq \|A_\varepsilon\|_1 \leq s\gamma$, we require that $T = \Omega(ns/m)$.

Any matrix $A_\varepsilon \in \mathcal{A}$ is indexed by an ns -dimensional binary vector ε . From the Gilbert-Varshamov theorem, we can

come up with a subset $\mathcal{A}_\varepsilon \subset \mathcal{A}$ with $|\mathcal{A}_\varepsilon| \geq 2^{ns/8}$ such that for any $A_\varepsilon, A_{\varepsilon'} \in \mathcal{A}_\varepsilon$, we have,

$$\|A_\varepsilon - A_{\varepsilon'}\|_F^2 \geq \frac{n\gamma^2}{8} \Rightarrow \|A_\varepsilon - A_{\varepsilon'}\|_2 \geq \gamma \sqrt{\frac{s}{8}}$$

Observe that stacked states

$$\begin{aligned}X_1^T &\sim \mathcal{N} \left(0, \begin{bmatrix} I & A & A^2 & \dots & A^{T-1} \\ A^\top & I & A & \dots & A^{T-2} \\ \vdots & & \ddots & & \vdots \\ A^{T-1\top} & A^{T-2\top} & A^{T-3\top} & \dots & I \end{bmatrix} \right) \\ &\sim \mathcal{N}(0, \Phi_A)\end{aligned}$$

Retaining notation Y_1^T and stacking matrices M_t diagonally to form M , we get that $Y_1^T \sim \mathbb{P}'_A = \mathcal{N}(0, M\Phi M^\top)$ and $\mathbb{P}_A(Z_1^T) = \mathbb{P}(M_1^T) \mathbb{P}'_A(Y_1^T)$. We seek to bound $D_{KL}(\mathbb{P}_{A_\varepsilon} \parallel \mathbb{P}_{A_0})$.

$$\begin{aligned}D_{KL}(\mathbb{P}_{A_\varepsilon} \parallel \mathbb{P}_{A_0}) &= \mathbb{E}_{M_1^T} [D_{KL}(\mathbb{P}'_{A_\varepsilon} \parallel \mathbb{P}'_{A_0})] \\ &= \mathbb{E} \left[\frac{1}{2} \text{Tr}(M\Phi_\varepsilon M^\top) - \frac{1}{2} \log |M\Phi_\varepsilon M^\top| - \frac{Tm}{2} \right] \\ &= \mathbb{E} \left[-\frac{1}{2} \log |I_{Tm} + Q| \right] \\ &\leq \mathbb{E} \left[\frac{1}{4} \|Q\|_F^2 \right]\end{aligned}$$

Where $M\Phi_A M^\top = I_{Tm} + Q$. Now,

$$\begin{aligned}\mathbb{E}[\|Q\|_F^2] &\leq \sum_{t_1 \neq t_2 \in [T]} \mathbb{E} \left[\|M_{t_1} A^{|t_2-t_1|} M_{t_2}^\top\|_F^2 \right] \\ &\leq \sum_{t_1 \neq t_2 \in [T]; a,b \in [m]} \mathbb{E} \left[\left(\sum_{i,j} (A^{|t_2-t_1|})_{i,j} (M_{t_1})_{a,i} (M_{t_2})_{b,j} \right)^2 \right] \\ &\leq \sum_{t_1 \neq t_2 \in [T]} \frac{2m^2 \gamma^2 \sigma_{\max}^2 |t_1 - t_2| ns}{n^2} \\ &\leq \frac{4Tm^2 \gamma^2 ns}{n^2(1 - \sigma_{\max}^2)} \\ \Rightarrow D_{KL}(\mathbb{P}_{A_\varepsilon} \parallel \mathbb{P}_{A_0}) &\leq c' \frac{ns}{8} < c' \log |\mathcal{A}_\varepsilon|\end{aligned}$$

A fact used here is that $|(A^l)_{i,j}| \leq \gamma \sigma_{\max}^{l-1}$.

Low rank Transition Matrices

1) *Low-Rank Transition Matrix*: We consider the family \mathcal{A} of rank r transition matrices (with $Q_w = I$). For convenience, assume r divides n .

$$\mathcal{A} = \{ \mathbf{1}_{n/r} \otimes \bar{A}_\varepsilon, \bar{A}_\varepsilon \in \mathbb{R}^{r \times n}, (\bar{A}_\varepsilon)_{i,j} = \gamma \varepsilon_{i,j}, \varepsilon \in \{0, 1\}^{nr} \}$$

Here $\gamma = c\sqrt{rn/Tm^2}$. For any $A \in \mathcal{A}$, we require stability, or $n\gamma \leq \sigma_{\max} < 1$, which implies a requirement of $T = \Omega(n^3 r/m^2)$. From the Gilbert-Varshamov theorem, we know that there exists $\mathcal{A}_\varepsilon \subset \mathcal{A}$ with $|\mathcal{A}_\varepsilon| \geq 2^{nr/8}$ and for $A_\varepsilon, A_{\varepsilon'} \in \mathcal{A}_\varepsilon$,

$$\|A_\varepsilon - A_{\varepsilon'}\|_F^2 \geq \frac{\gamma^2 n^2}{8}$$

If we write out the KL divergence, it is almost identical to the previous case. We obtain

$$\begin{aligned} D_{KL}(\mathbb{P}_{A_\varepsilon} \| \mathbb{P}_{A_0}) &\leq \frac{2Tm^2\gamma^2n^2}{n^2(1-\sigma_{\max}^2)} \\ &\leq \frac{c'n^r}{8} = c' \log |\mathcal{A}_\varepsilon| \end{aligned}$$

APPENDIX D

A. Sparse Covariance Matrix

In this section, we prove a tighter lower bound for the rate of convergence of sparse covariance matrices.

We follow the analysis of [3] and consider a class of covariance matrices that are sparse. The analysis follows a modified version of Assouad's lemma.

We consider the class of symmetric covariance matrices defined as

$$\mathcal{S} = \left\{ \Sigma \mid \max_{j \leq n} \sum_{i \neq j} |\Sigma_{ij}|^q \leq s \right\}$$

When $q = 0$, we see that there are at most s non-zero non-diagonal elements in each column and by symmetry, each row.

Our constructed parameter set is as follows:

- 1) Consider $r = \lfloor n/2 \rfloor$, approximately half the size of the dimension. We consider a matrix of dimension $r \times r$ that has exactly s non-zero elements in each row and at most $2s$ non-zero elements in each column. We call this set Λ . To be more precise,

$$\Lambda = \left\{ M \in \mathbf{R}^{r \times r} \mid \forall i \in [r], \sum_j |M_{i,j}|^0 = s, \forall j \in [r] \sum_i |M_{i,j}|^0 \leq 2s, M_{i,j} \in \{0, \nu\} \right\}$$

- 2) Further consider set Γ , the set of all binary sequences of length r . This set would express whether a row of a matrix in Λ is seen.
- 3) For any $\lambda \in \Lambda$, let λ_i represent row i . Now we define matrix $L(\lambda_i)$ as follows. Consider $\lambda'_i \in \mathbf{R}^{1 \times n}$ where $\lambda'_{i,j} = \lambda_{i,j-\lceil n/2 \rceil} \mathbf{1}(j \geq \lceil n/2 \rceil)$. Now, $L(\lambda_i) = \lambda_i'^\top \lambda_i'$. This means that the i^{th} row of $L(\lambda_i)$ has the r elements of λ_i as its right-most elements. By symmetry, the last r elements of the i^{th} column also arise from here.
- 4) Consider the parameter set $\Theta = (\Gamma, \Lambda)$ with elements $\theta = (\gamma, \lambda)$. We now define the class of covariance matrices we consider as

$$\mathcal{S}_1 = \left\{ \Sigma(\theta) = I + \nu \sum_{i=1}^r \gamma_i L(\lambda_i), \theta \in \Theta \right\}$$

First we note that $\|\Sigma(\theta)\|_2 \geq 1 - 2s\nu$. Taking $\nu = \mathcal{O}(c\sqrt{\frac{\log n}{T}})$, when $s = \mathcal{O}(\sqrt{\frac{T}{\log n}})$, we see that $\Sigma(\theta)$ is psd. To reiterate, we note that the number of non-zero elements in each row and column does not exceed $2s$.

In this case, we assume that $A = 0$ and $X_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \Sigma(\theta))$. Let \mathbb{P}_θ denote the probability of observing Z_1^T . We see $Z_t = M_t X_t$, and thus $\mathbb{P}_{t,\theta}(Z_t) = \mathbb{P}(M_t) \mathbb{P}'_{t,\theta}(Z_t)$ where

$\mathbb{P}'_{t,\theta} = \mathcal{N}(0, M_t \Sigma_\theta m_t^\top)$. We borrow some notation from earlier and write.

$$\begin{aligned} \mathbb{P}_\theta(Z_1^T) &= \prod_{t=1}^T \mathbb{P}_{t,\theta}(Z_t) \\ &= \prod_{t=1}^T \mathbb{P}(M_t) \mathbb{P}'_{t,\theta}(Z_t) \end{aligned}$$

Upon observing Z_1^T , an estimator comes up with an estimate $\Sigma_{\hat{\theta}}$. Observe the following sequence

$$\begin{aligned} \max_\theta \mathbb{E}[\|\Sigma_{\hat{\theta}} - \Sigma_\theta\|_2] &\geq \frac{1}{2^r |\Lambda|} \sum_\theta \mathbb{E}[\|\Sigma_{\hat{\theta}} - \Sigma_\theta\|_2] \\ &\geq \frac{1}{2^r |\Lambda|} \sum_\theta \mathbb{E} \left[\frac{\|\Sigma_{\hat{\theta}} - \Sigma_\theta\|_2}{\rho(\hat{\gamma}, \gamma) \wedge 1} \rho(\hat{\gamma}, \gamma) \right] \\ &\geq \min_{\rho(\hat{\gamma}, \gamma) \geq 1} \frac{\|\Sigma_{\hat{\theta}} - \Sigma_\theta\|_2}{\rho(\hat{\gamma}, \gamma)} \frac{1}{2^r |\Lambda|} \sum_\theta \mathbb{E}[\rho(\hat{\gamma}, \gamma)] \end{aligned}$$

Now we show for $\rho(\hat{\gamma}, \gamma) \geq 1$,

$$\begin{aligned} \frac{\|\Sigma_{\hat{\theta}} - \Sigma_\theta\|_2^2}{\rho(\hat{\gamma}, \gamma)} &\geq \frac{\|(\Sigma_{\hat{\theta}} - \Sigma_\theta)v\|_2^2}{\rho(\hat{\gamma}, \gamma)\|v\|_2^2} \\ &\geq \frac{s^2\nu^2}{n} \end{aligned}$$

The choice of v here is $v_j = \mathbf{1}(j \geq \lceil n/2 \rceil)$.

We now focus on the other term and see that

$$\begin{aligned} &\frac{1}{2^r |\Lambda|} \sum_\theta \mathbb{E}[\rho(\hat{\gamma}, \gamma)] \\ &\geq \frac{1}{2^r |\Lambda|} \mathbb{E}_{M_t} \left[\sum_{i=1}^r \sum_{\theta: \gamma_i=0} \mathbb{E}[\hat{\gamma}_i | M_t] + \sum_{\theta: \gamma_i=1} \mathbb{E}[1 - \hat{\gamma}_i | M_t] \right] \\ &\geq \frac{1}{2} \sum_{i=1}^r \mathbb{E}_{M_t} \left[\int \hat{\gamma}_i \sum_{\gamma_i=0} \frac{d\mathbb{P}'_\theta}{2^{r-1}|\Lambda|} + (1 - \hat{\gamma}_i) \sum_{\gamma_i=1} \frac{d\mathbb{P}'_\theta}{2^{r-1}|\Lambda|} \right] \\ &\geq \frac{1}{2} \sum_{i=1}^r \mathbb{E}_{M_t} [1 - D_{TV}(\bar{\mathbb{P}}'_{\theta, \gamma_i=0}, \bar{\mathbb{P}}'_{\theta, \gamma_i=1})] \end{aligned}$$

Here $\bar{\mathbb{P}}'_{\theta, \gamma_i=0} = \frac{1}{2^{r-1}|\Lambda|} \sum_{\theta: \gamma_i=0} \mathbb{P}'_\theta$. D_{TV} is the total variation distance.

It is easy to see that the total variation distance between mixture distributions is less than the total variation distance between constituents leading to

$$\begin{aligned} D_{TV}(\bar{\mathbb{P}}'_{\gamma_i=0}, \bar{\mathbb{P}}'_{\gamma_i=1}) &\leq \frac{1}{2^{r-1}|\Lambda_{-i}|} \sum_{\theta: \gamma_{-i}, \lambda_{-i}} D_{TV}(\mathbb{P}'_{\gamma_i=0, \gamma_{-i}, \lambda_{-i}}, \bar{\mathbb{P}}'_{\gamma_i=1, \gamma_{-i}, \lambda_{-i}}) \\ &\leq \min_{\gamma_{-i}, \lambda_{-i}} D_{TV}(\mathbb{P}'_{\gamma_i=0, \gamma_{-i}, \lambda_{-i}}, \bar{\mathbb{P}}'_{\gamma_i=1, \gamma_{-i}, \lambda_{-i}}) \end{aligned}$$

We now use the following relation between distances between measures

$$D_{TV}(\mathbb{P}_a, \mathbb{P}_b) \leq \sqrt{D_{\chi^2}(\mathbb{P}_a, \mathbb{P}_b)} = \mathbb{E}_{\mathbb{P}_b}[(d\mathbb{P}_a/d\mathbb{P}_b)^2 - 1]$$

We now study what the distributions we are considering look like. $\mathbb{P}'_{\gamma_1=0, \gamma_{-1}, \lambda_{-1}} = \prod_t \mathbb{P}'_{t, \gamma_1=0, \gamma_{-1}, \lambda_{-1}}$, the latter is a single multivariate distribution with the covariance matrix,

$$\Sigma_0 = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & M_{t,-1} S M_{t,-1}^T \end{bmatrix} & M_{t,1} = e_1, \\ M_t S' M_t^T & e_1 \notin M_t \end{cases}$$

where $M_t = [M_{t,1}; M_{t,-1}]$ and S is a symmetric matrix dependent on $(\lambda_{-1}, \gamma_{-1})$ with the property for $i \leq j$

$$S_{ij} = \begin{cases} 1 & i = j \\ \nu & \gamma_i = \lambda_{ij} = 1 \\ 0 & \text{else} \end{cases}$$

We can see that $\bar{\mathbb{P}}'_{t, \gamma_1=1, \gamma_{-1}, \lambda_{-1}}$ is a mixture of distributions of a number of Gaussians. Suppose $n_{\lambda_{-1}}$ is the number of columns in λ_{-1} with elements equal to $2s$. From $n_{\lambda_{-1}} 2s \leq rs$, we see that $n_{\lambda_{-1}} \leq r/2$. Thus the number of distributions is given by the number of non-zero elements in the first row λ_1 that are not in these $n_{\lambda_{-1}}$ positions. The maximum number is given by $(r/2s) = (n/4s)$. Each of these distributions has this form

$$\Sigma_i = \begin{cases} \begin{bmatrix} 1 & r^T M_{t,-1}^T \\ M_{t,-1} r & M_{t,-1} S M_{t,-1}^T \end{bmatrix} & M_{t,1} = e_1, \\ M_t S' M_t^T & e_1 \notin M_t \end{cases}$$

We see that if $e_1 \notin M_t$, distributions $\mathbb{P}'_{t, \gamma_1=0, \gamma_{-1}, \lambda_{-1}} = \bar{\mathbb{P}}'_{t, \gamma_1=1, \gamma_{-1}, \lambda_{-1}}$ and the distance between them is 0. Since we seek to find an upper bound to the distance, we can assume that $e_1 \in M_t$.

We use the following useful lemma relating to chi-squared distances between normal distributions $g_i = \mathcal{N}(0, \Sigma_i)$:

$$\int \frac{g_1 g_2}{g_0} = |I - \Sigma_0^{-2} (\Sigma_1 - \Sigma_0) (\Sigma_2 - \Sigma_0)|^{-1/2}$$

Let's denote

$$R(t, \gamma_{-1}, \lambda_{-1}, \lambda_1, \lambda'_1) = |I - \Sigma_0^{-2} (\Sigma_{\lambda_1} - \Sigma_0) (\Sigma_{\lambda'_1} - \Sigma_0)|^{-1/2}$$

We can now write

$$\begin{aligned} \mathbb{E}_{\gamma_{-1}, \lambda_{-1}} \left[\int \left(\frac{\bar{\mathbb{P}}_{\gamma_1=1, \gamma_{-1}, \lambda_{-1}}}{\bar{\mathbb{P}}_{\gamma_1=0, \gamma_{-1}, \lambda_{-1}}} \right)^2 d\bar{\mathbb{P}}_{\gamma_1=0, \gamma_{-1}, \lambda_{-1}} - 1 \right] &\leq \\ \mathbb{E}_{\lambda_1, \lambda'_1} \mathbb{E}_{\gamma_{-1}, \lambda_{-1} | \lambda_1, \lambda'_1} \left[\prod_{t=1}^T R(t, \gamma_{-1}, \lambda_{-1}, \lambda_1, \lambda'_1) - 1 \right] \end{aligned}$$

Here is an observation:

$$\begin{aligned} R(t, \gamma_{-1}, \lambda_{-1}, \lambda_1, \lambda'_1) \\ = R'(t, \gamma_{-1}, \lambda_{-1}, \lambda_1, \lambda'_1) |I - ((\Sigma_{\lambda_1} - \Sigma_0) (\Sigma_{\lambda'_1} - \Sigma_0))|^{-1/2} \end{aligned}$$

As proven in Lemma 11 of [3],

$$\mathbb{E}_{\lambda_1, \lambda'_1 | J} \mathbb{E}_{\gamma_{-1}, \lambda_{-1} | \lambda_1, \lambda'_1} \prod_{t=1}^T R'(t, \gamma_{-1}, \lambda_{-1}, \lambda_1, \lambda'_1) \leq 1.5$$

Let's focus on the matrix $(\Sigma_{\lambda_1} - \Sigma_0) (\Sigma_{\lambda'_1} - \Sigma_0)$. It can be written as

$$(\Sigma_{\lambda_1} - \Sigma_0) (\Sigma_{\lambda'_1} - \Sigma_0) = \begin{bmatrix} r_1^T M_{t,-1}^T M_{t,-1} r_2 & 0 \\ 0 & M_{t,-1} r_1 r_2^T M_{t,-1}^T \end{bmatrix}$$

This can be seen to be a rank-2 matrix as it is of the form $\begin{bmatrix} \alpha^T \beta & 0 \\ 0 & \alpha \beta^T \end{bmatrix}$ and the identical eigenvalues are $|r_1^T M_{t,-1}^T M_{t,-1} r_2|$. Thus,

$$\begin{aligned} &|I - ((\Sigma_{\lambda_1} - \Sigma_0) (\Sigma_{\lambda'_1} - \Sigma_0))|^{-1/2} \\ &= (1 - |r_1^T M_{t,-1}^T M_{t,-1} r_2|)^{-1} \end{aligned}$$

Let the rows of $M_{t,-1}$ be $m_{t,i}, i \in [m-1]$. We had assumed that $m_{t,i}$ are orthogonal and from the unit sphere. Suppose that r_1 is non-zero in indices I_1 and r_2 is non-zero in indices I_2 . Let the number of overlapping indices be J . We note that

$$\begin{aligned} r_1^T M_{t,-1}^T M_{t,-1} r_2 &\leq \sum_{l=1}^m \sum_{i \in I_1, j \in I_2} \nu^2 m_{t,l,i} m_{t,l,j} \\ &\leq s^2 \nu^2 < 1, \end{aligned}$$

with appropriate choice of constant in ν . We can conclude

$$\begin{aligned} &|I - ((\Sigma_{\lambda_1} - \Sigma_0) (\Sigma_{\lambda'_1} - \Sigma_0))|^{-1/2} \\ &\leq 1 + 2|r_1^T M_{t,-1}^T M_{t,-1} r_2| \end{aligned}$$

As described in [3], J arises from a hypergeometric distribution and is bounded by $\left(\frac{s^2}{n/4-1-s}\right)^j$

Putting all of this together,

$$\begin{aligned} \mathbb{E}_{M_t} \mathbb{E}_{\gamma_{-1}, \lambda_{-1}} \left[\int \left(\frac{\bar{\mathbb{P}}_{\gamma_1=1, \gamma_{-1}, \lambda_{-1}}}{\bar{\mathbb{P}}_{\gamma_1=0, \gamma_{-1}, \lambda_{-1}}} \right)^2 d\bar{\mathbb{P}}_{\gamma_1=0, \gamma_{-1}, \lambda_{-1}} - 1 \right] \\ \leq \sum_j \left(\frac{s^2}{n/4-1-s} \right)^j \left\{ \mathbb{E}_{M_t} \prod_{t=1}^T (1 + 2|r_1^T M_{t,-1}^T M_{t,-1} r_2|) \frac{3}{2} - 1 \right\} \\ \leq \sum_j \left(\frac{s^2}{n/4-1-s} \right)^j \left\{ \prod_{t=1}^T (1 + 2j\nu^2 \frac{m^2}{n^2}) \frac{3}{2} - 1 \right\} \end{aligned}$$

REFERENCES

- [1] J. Demmel, "The componentwise distance to the nearest singular matrix," *SIAM Journal on Matrix Analysis and Applications*, vol. 13, no. 1, pp. 10–19, 1992. [Online]. Available: <http://dx.doi.org/10.1137/0613003>
- [2] F. Han, H. Lu, and H. Liu, "A direct estimation of high dimensional stationary vector autoregressions," *Journal of Machine Learning Research*, vol. 16, pp. 3115–3150, 2015.
- [3] T. T. Cai, H. H. Zhou *et al.*, "Optimal rates of convergence for sparse covariance matrix estimation," *The Annals of Statistics*, vol. 40, no. 5, pp. 2389–2420, 2012.