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APPENDIX A

In this section, we focus on showing how VAR processes
can be reconstructed from low dimensional random projec-
tions.

At each point in time for state xt, we are given two random
low dimensional projections zit = Ψi

txt, i ∈ {1, 2} where the
rank of matrix Ψi

t is m� n.
We saw that we could write z1

t = ηtxt +
√
ηt(1− ηt)R1

txt
and z2

t = ωtxt +
√
ωt(1− ωt)R2

txt. Here Rit are rotation
matrices that are uniformly distributed on the hypersphere and
perpendicular to xt. ηt, ωt

iid∼ Beta
(
m
2 ,

n−m
2

)
.

Consider the estimate of the covariance matrix,

Σ̂k =
n2

(T − k)m2

T−k∑
t=1

z1
t z

2ᵀ
t+k

=
n2

(T − k)m2

T−k∑
t=1

ηtωt+kxtx
ᵀ
t+k+√

ηtωt+k(1− ωt+k)(1− ηt)R1
txtxt+kR

2ᵀ
t+k+√

ηt(1− ηt)ωt+kR1
txtx

ᵀ
t+k+√

ωt+k(1− ωt+k)ηtxtx
ᵀ
t+kR

2ᵀ
t+k

= P1 + P2 + P3 + P4

It can be seen that,

E[P1] = E

[
1

T − k

T−k∑
t=1

xtx
ᵀ
t+k

]
E[P2] = E[P3] = E[P4] = 0

The former is because E[ηt] = E[ωt] = m/n and the latter is
because Rit is a symmetric random rotation matrix.

The difference between the mean of term P1 and the true
covariance matrices is bounded as

‖E[P1]− Σk‖2 ≤
σkmax

(1− σ2
max)(T − k)

‖Qw‖2
(1− σ2

max)
.
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This is because Σk = E[xtx
ᵀ
t+k] =

(∑∞
i=0A

iQwA
iᵀ
)
Akᵀ.

E[P1] = E

[
1

T − k

T−k∑
t=1

xtx
ᵀ
t+k

]

=
1

T − k

T−k∑
t=1

t−1∑
i=0

AiQwA
i+kᵀ

‖E[P1]− Σk‖2 ≤
1

T − k

T−k∑
t=1

∞∑
i=t

‖Qw‖2σ2i+k
max

≤ ‖Qw‖2σkmax

(1− σ2
max)(T − k)

T−k∑
t=1

σ2t
max

≤ σkmax

(1− σ2
max)(T − k)

‖Qw‖2
(1− σ2

max)

This quantity is zero if the system is initiated from the
stationary distribution.

We create stacked vectors of noise W = [w0|w1| . . . |wT ].
Consider Φ ∈ RnT×n(T ),Γi ∈ RT×nT

Φ =


I . . . 0
A . . . 0
...

. . .
...

AT−1 . . . I


Γt =

[
0n×n . . . I . . . 0n×n

]
We can define binary matrices {Jl}l∈[T ] ∈ of dimension

T × T . Jl denotes locations in block matrix Φ where Al is
present. Jl has at most 1 non-zero entry in each row. Hence,
‖Jl‖2 ≤ 1.

Φ =

T∑
l=0

Jl ⊗Al [Kronecker product]

⇒ ‖Φ‖2 ≤
∞∑
l=0

‖Jl‖2‖Al‖2 [Norm over ⊗]

⇒ ‖Φ‖2 ≤
∞∑
l=0

σlmax =
1

(1− σmax)

Using these, we can write xt = ΓtΦW . Writing

Pi =
n2

(T − k)m2

T−k∑
t=1

pitR
1ᵀ
i,txtx

ᵀ
t+kR

2ᵀ
i,t+k, (1)



Pi R1
i,t R2

i,t+k pit

P1 I I ηtωt+k

P2 R1
t R2

t+k

√
ηt(1− ηt)ωt+k(1− ωt+k)

P3 R1
t I

√
ηt(1− ηt)ωt+k

P4 I R2
t+k ηt

√
ωt+k(1− ωt+k)

TABLE I: Values of the terms in (1).

where terms are detailed in Table I.
We observe that (pit)

2 ≤ ηtωt+k. We now note for α, β ∈
Rn, ‖α‖2 = ‖β‖2 = 1.

αᵀPiβ =
n2

(T − k)m2

T−k∑
t=1

αᵀpitR
1
i,txtx

ᵀ
t+kR

2ᵀ
i,t+kβ

= W ᵀΦᵀ

(
n2

m2(T − k)

T−k∑
t=1

pitΓ
ᵀ
t+kR

2ᵀ
i,t+kβα

ᵀR1ᵀ
i,tΓt

)
ΦW

= W ᵀΦᵀBΦW

W = Q
1/2
w z where z ∼ N (0, I). Using this, αᵀPiβ = zᵀLz.

‖L‖2F = ‖Q1/2ᵀ
w ΦᵀBΦQ1/2

w ‖2F

≤ ‖Qw‖22‖Φ‖42
n4

(T − k)2m4

T−k∑
t=1

ηtωt+k‖R2ᵀ
i,t+kβα

ᵀR1ᵀ
i,t‖

2
F

≤ ‖Qw‖22n2

(1− σmax)4m2(T − k)
+ o(T−1) (2)

The final step is by using the Hoeffding bound for the conver-
gence of n2

m2(T−k)

∑T−k
t=1 ηtωt−k. Each term in the summation

is bounded by [0, 1] and is subgaussian 1/4. By Hoeffding
bound with probability > 1 − δ/5, 1

(T−k)

∑T−k
t=1 ηtωt−k ≤

E[ηtωt+k] +
√

log(5/δ)
2(T−k) ≤ m

2/n2 +O(T−1/2). Let this event
be Errc.

For the concentration result, consider eigenvalues of sym-
metric matrix Ls = L+Lᵀ

2 be λi. We have
∑
i λ

2
i = ‖Ls‖2F ≤

L2
F . Diagonalizing Ls and because of the circularly symmetric

nature of standard gaussian vector

zᵀLz − E[zᵀLz] =
∑
i

λi(z
2
i − 1)

Pr(
∑
i

λi(z
2
i − 1) ≥ ε) ≤ e−tε

∏
i

E[exp
(
tλi(z

2
i − 1)

)
]

≤ exp (−tε)
∏
i

e−tλi

√
1− 2tλi

≤ exp

(
−tε+ 2t2

∑
i

λ2
i

)
The first inequality holds when t ≥ 0. The second holds using
MGF of χ2 random variable when tλi ≤ 1

2 . The last inequality
holds as log(1 − x) ≥ −x − x2 when x ≤ 1

2 or whenever
tλi ≤ 1

4 . We take t = ε
4L2

F
to obtain that conditioned on Errc,

with probability > 1− δ/5,

|αᵀ(Pi − E[Pi])β| ≤
√

8 log(10/δ)

T − k
n‖Qw‖2

m(1− σmax)2
+ o(T−1/2).

(3)

We now present the proof of Theorem 3 which combines
the above results.

Proof. Max norm bound Observe

‖Σk − Σ̂k‖max ≤ ‖Σ̂k − E[Σ̂k]‖max + ‖E[Σ̂k]− Σk‖max

≤
4∑
i=1

‖Pi − E[Pi]‖max +O(T−1).

We use (3) to get

αᵀ(Σ̂k − Σk)β

≤ 4

√
8 log(10/δ)

T − k
n‖Qw‖2

m(1− σmax)2
+ o(T−1/2)

when ‖α‖2, ‖β‖2 ≤ 1.
Now using α = ei and β = ej we obtain the convergence

result for each element |Σ̂kij − Σkij | and taking union bound
over the n2 choices, we obtain the result for the max bound.
`2 norm bound Let us define ∆Σk = Σ̂k−Σk. We consider

a covering set A such that for any α ∈ Rn such that ‖α‖2 ≤ 1,
there exists α′ ∈ A with ‖α′‖2 ≤ 1, ‖α − α′‖2 ≤ ε. From
covering set theory, we can construct such a set with |A| ≤
(3/ε)n. Applying union bound, we find

max
α,β∈A

αᵀ∆Σkβ ≤ 4

√
8(2n log(3/ε) + log(6/δ))

(T − k)
×

n‖Qw‖2
m(1− σmax)2

+ o((T − k)−1/2)

Now, we see

‖∆Σk‖2 = max
α,β

αᵀ∆Σkβ

≤ max
α′,β′∈A

α′ᵀ∆Σkβ′ + (α− α′)ᵀ∆Σkβ′

+ αᵀ∆Σk(β − β′)
≤ max
α′,β′∈A

α′ᵀ∆Σkβ′ + 2ε‖∆Σk‖2

⇒ ‖∆Σk‖2 ≤
1

1− 2ε
max

α′,β′∈A
α′ᵀ∆Σkβ′

We use ε = 1/4 to obtain the final result.

Subsampling case The above proof has been derived for
the compressive measurement case but it also holds for the
subsampling case. Here zit = Ψi

txt, i ∈ {1, 2} where Ψi
t is a

binary matrix with m ones and n−m zeros.

Σ̂k =
n2

m2(T − k)

T−k∑
t=1

Ψ1
txtx

ᵀ
t+kΨ2ᵀ

t+k

αᵀΣ̂kβ

= W ᵀΦᵀ

(
n2

m2(T − k)

T−k∑
t=1

Γᵀ
t+kΨ2ᵀ

t+kβα
ᵀΨ1

tΓt

)
ΦW

= W ᵀΦᵀBΦW



Like in the earlier case, we need to bound ‖B‖2F

‖B‖2F ≤
n4

(T − k)2m4

∑
i,j

β2
i α

2
j

T−k∑
t=1

(Ψ2
t+k)ii(Ψ

1
t )jj

From Hoeffding bound, with probability > 1 − δ/5 for all
values of i, j,

1

T − k

T−k∑
t=1

(Ψ2
t+k)ii(Ψ

1
t )jj ≤ E[(Ψ2

t+k)ii(Ψ
1
t )jj ] +O(

log n/δ√
T − k

)

≤ m2

n2
+O(T−1/2 log n)

The rest of the proof is the same as upper bound (2) holds.

APPENDIX B

In this section, we estimate the transition matrix and covari-
ance matrix under various constraints.

We derive convergence guarantees for the covariance matrix
under structural assumptions.

Sparsity Let the set U = {Σ :
∑
j |Σij |q ≤ s∀i}. We

assume Σk ∈ U . First we suppose Uu(Σ̂k −Σk is symmetric.
Consider the thresholding operation Uu(·) defined as

(Uu(Σ))ij = Σij1(|Σij | ≥ u).

We observe,

‖Uu(Σ̂k)− Σk‖2 ≤ ‖Uu(Σ̂k)− Uu(Σk)‖2 + ‖Uu(Σk)− Σk‖2

The second term can be bounded as

‖Uu(Σk)− Σk‖2 ≤ max
i

∑
j

|Σkij |1(|Σkij | ≤ u)

≤ max
i
u
∑
j

|Σkij/u|q1(|Σkij | ≤ u)

≤ u1−qs (4)

The first term needs a more detailed analysis as

‖Uu(Σ̂k)− Uu(Σk)‖2
≤ max

i

∑
j

|(Uu(Σ̂k)− Uu(Σk))ij |

≤ max
i

∑
j

|Σkij − Σ̂kij |1(|Σkij | ≥ u, |Σ̂kij | ≥ u)

+ max
i

∑
j

|Σkij |1(|Σkij | ≥ u, |Σ̂kij | ≤ u)

+ max
i

∑
j

|Σ̂kij |1(|Σkij | ≤ u, |Σ̂kij | ≥ u)

= I + II + III

I can be bounded with high probability as,

I ≤ ‖∆Σk‖max max
i

∑
j

1(|Σkij | ≥ u)

≤ γ(δ) max
i

∑
j

(Σkij/u)q1(|Σkij | ≥ u) (5)

≤ γ(δ)su−q

For term II, we have,

II ≤ max
i

∑
j

(
|∆Σkij |+ |Σ̂kij |

)
1(|Σkij | ≥ u, |Σ̂kij | ≤ u)

≤ (γ(δ) + u)ku−q

where we have used the bound in (5) and recognised that each
term in the second summation is bounded by u.

Term III can be written in two parts

III ≤ max
i

∑
j

[|∆Σkij |+ |Σkij |]1(|Σkij | ≤ u, |Σ̂kij | ≥ u)

≤ max
i

∑
j

|∆Σkij |1(|Σkij | ≤ u, |Σ̂kij | ≥ u) + su1−q

≤ γ(δ) max
i

∑
j

1(|Σkij | ≥ u− γ(δ)) + su1−q

≤ γ(δ)
u−q

(1− γ(δ)/u)q
+ su1−q

where (4) has been used.
We now use u = 2γ(δ) to obtain the bound. if Σk is not

symmetric. We bound ‖∆Σk‖1, ‖∆Σk‖∞ as above and use
‖∆Σk‖22 ≤ ‖∆Σk‖1‖∆Σk‖∞.

Additionally, if λmin(Σk) ≥ ε0, we obtain the result
for the inverse as well as ‖(Uu(Σ̂k))−1 − (Σk)−1‖2 =

Ω
(
‖Uu(Σ̂k)− Σk‖2

)
Dense Transition Matrix
With probability greater than 1−2δ both, maximum value of

∆Σ0 = Σ̂0−Σ0 and ∆Σ1 = Σ̂1−Σ1 are less than γ. We have
also seen that ‖∆Σ0‖2, ‖∆Σ1‖2 ≤ O(

√
nγ). As mentioned in

[1], we get

‖∆Σ0†‖2 ≤ ‖Σ0†‖22‖∆Σ0‖2 ≤
4
√
nγ

σ2
min

.

This is true when ‖∆Σ0‖2 < λmin(Σ0) and Σ0 is invertible.
The error is given by,

‖Â−A‖2 ≤ ‖Σ̂1ᵀΣ̂0† − Σ1ᵀΣ̂0† + Σ1ᵀΣ̂0† − Σ1ᵀΣ0†‖2
≤ (‖∆Σ0†‖2 + ‖Σ0†‖2)‖∆Σ1‖2 + ‖Σ1‖2‖∆Σ0†‖2

≤ 4σmax
√
nγ‖Qw‖2

σ2
min(1− σ2

max)
,

completing the proof.
Sparse Transition Matrix
We now obtain results with sparse A. This proof is described

in [2] for getting performance bounds on estimate A using the
Dantzig selector algorithm with our estimates of Σ0,Σ1.

Let γ be the maximum deviation of empirical covariance
matrices as earlier.

We show that Aᵀ = Σ0†Σ1 is a feasible solution with high
probability.

‖Σ̂0Aᵀ − Σ̂1‖max ≤ ‖(Σ̂0 − Σ0)A‖max + ‖(Σ̂1 − Σ1)‖max

≤ γ(‖A‖1 + 1) = λ



Clearly, ‖Â‖1 ≤ ‖A‖1 with high probability. We also
obtain,

‖Â−A‖max = ‖Σ0†(Σ0Âᵀ − Σ1)‖max

= ‖Σ0†
(

Σ0Âᵀ − Σ̂0Âᵀ + Σ̂0Âᵀ − Σ̂1 + Σ̂1 − Σ1
)
‖max

≤ 2λ‖Σ0†‖1 = λ1

We can use λ1 as a threshold level for sparsity. We consider
each column j separately. Define set T = {i ∈ [n]|Aij | ≥ λ1}.
For convenience, we denote column j of matrix A as a and
matrix Â as â. We can write

‖â− a‖1 ≤ ‖âT c‖1 + ‖aT c‖1 + ‖âT − aT ‖1
≤ ‖a‖1 + ‖aT c‖1 − ‖âT ‖1 + ‖âT − aT ‖1
≤ 2‖aT c‖1 + (‖aT ‖1 − ‖âT ‖1) + ‖âT − aT ‖1
≤ 2 (‖aT c‖1 + ‖aT − âT ‖1)

Consider sum

sa =
∑
i

min(
|ai|
λ1

, 1)

≤ λ−q1

∑
i

|ai|q = sλ−q1

Now, ‖aT c‖1 ≤ λ1sa = sλ1−q
1 . Also, ‖aT −âT ‖1 ≤ λ1|Tj | ≤

λ1sa = sλ1−q
1 . Substituting these, we get the bound ‖Â −

A‖1 ≤ 4sλ1−q
1 .

Low Rank Transition Matrix
We assume the rank of the transition matrix A is r � n.

We use the following estimator

Â = argminB〈Aᵀ, Σ̂0Aᵀ − 2Σ̂1〉+ λn‖A‖∗

For the analysis, we again denote ∆̂ = Â − A. From the
optimality conditions and some algebra,

〈∆̄ᵀ, Σ̂0∆̄ᵀ〉 ≤ 2〈∆̄ᵀ, Σ̂1 − Σ̂0Aᵀ〉+ λn(‖A‖∗ − ‖Â‖∗)
≤ (2‖Σ̂1 − Σ̂0Aᵀ‖2 + λn)‖∆̄‖∗
≤ (2(‖∆Σ1‖2 + σmax‖∆Σ0‖2) + λn)‖‖∆̄‖∗

As shown in appendix earlier, we get ‖∆̂‖∗ ≤ 4
√

2r‖∆̂‖F
when λn ≥ 4(‖∆Σ1‖2 + σmax‖∆Σ0‖2) = 4(1 + σmax)γ2.

Now the optimization problem is convex when Σ̂0 � 0 and
a sufficient condition is when ‖∆Σ0‖2 ≤ γ2 < λmin(Σ0)/2.
This happens when we have large enough number of time
samples T = Ω( 128n3 log 1/δ

λ2
minm

2

‖Qw‖22
(1−σmax)4 . Now 〈∆̄ᵀ, Σ̂0∆̄ᵀ〉 ≥

λmin(Σ0)
2 ‖∆̄‖2F which leads to the bound ‖∆̄‖F ≤ 12λn

√
2r.

APPENDIX C

In this appendix, we prove fundamental lower bounds on
the estimation of the parameters of the autoregressive process.

1) Covariance Matrix: We consider a class of
n−dimensional autoregressive processes with A = 0
and Σ0 arising from a class B of symmetric s−sparse
matrices (that have at most s elements in each row and
column) detailed below

B =

{
γ
∑

1≤i<jn

εi,j(eie
ᵀ
j + eje

ᵀ
i )1(k−1)s≤i<j≤(k−1)(s+1),k∈[n/s])

+ I, ε ∈ {0, 1}n(s−1)/2

}
.

This is the class of symmetric block-diagonal matrices. For
convenience, we assume that s divides n but this assumption
can be relaxed. Here γ = c(m2T/n2)−1/2 is a parameter
which we set.

Consider any Σε ∈ B. Observe that Σ0 with ε = 0 is
also a member. We observe that ‖Σε − Σ0‖2 ≤ sγ. This
quantity would be less than 1 guaranteeing that Σε � 0 if
T = Ω(s2n2/m2).

The Gilbert-Varshamov bound states that there exists a set
E of n(s − 1)/2−dimensional binary vectors of size |E| >
2

n(s−1)
16 such that for any ε, ε′ ∈ E , ‖ε−ε′‖1 > n(s−1)

16 . Using
this, there exists a subset BE , |BE | > 2n(s−1)/16, and for any
Σε,Σε′ , we have that

‖Σε − Σε′‖2F ≥
γ2n(s− 1)

8
>
γ2ns

16

⇒ ‖Σε − Σε′‖2 ≥ γ
√
s

4

At each point in time, we observe Zt = ΨtXt. Alternatively,
we could observe Yt = MtXt ∈ Rm. In the subsampling case,
Mt is Ψt with all the zero rows removed. In the orthogonal
compressive measurement scenario, Mt has rows that are
uniformly sampled from the n−dimensional hypersphere and
are orthogonal to one another. To reiterate, Ψt = M ′tMt in this
case. Now we can observe that Yt ∼ P′Σ0 = N (0,MtΣ

0Mᵀ
t ).

Also define, Pt,Σ(Zt) = P(Mt)P′t,Σ(Yt). As an example, we
see that P′t,Σ0

= N (0, Im). It follows from independence
(A = 0) that PΣ(ZT1 ) =

∏T
t=1 Pt,Σ(Zt).

We now find an upper bound for DKL(PΣε‖PΣ0). We see,

DKL(PΣε
‖PΣ0

) = EMT
1
E
[
log

(
PΣε(ZT1 )

PΣ0

)
|MT

1

]
=

T∑
t=1

EMt

[
DKL(P′t,Σε

‖P′t,Σ0
)
]

We use the KL divergence between absolutely continuous
normal distributions to note

DKL(P′t,Σε
‖P′t,Σ0

) =
1

2
Tr(MtΣεM

ᵀ
t )− 1

2
log |MtΣεM

ᵀ
t | −

m

2

MtΣεM
ᵀ
t = Im + γ

∑
i 6=j

Mtεi,jeie
ᵀ
jM

ᵀ
t

= Im +Qt



Qt has zero for its diagonal elements in expectation. To see
this,

E[(Mteie
ᵀ
jM

ᵀ
t )kk] = E[(Mt)k,i(Mt)k,j ]

= 0 when i 6= j. (6)

This is because row (Mt)k is a uniformly chosen unit vector
with (Mt)k,i = ui√∑n

i=1 u
2
i

, ui
iid∼ N (0, 1). Symmetry dictates

(6). Denote its eigenvalues by λi, i ∈ [n]. We see that
E[Tr(Qt)] =

∑r
i=1 λi = 0. Also,

DKL(P′t,Σε
‖P′t,Σ0

) = −1

2
log |Im +Qt|

= −1

2

r∑
i=1

log(1 + λi) ≤
1

4

r∑
i=1

λ2
i − 2λi

⇒ E[
1

4

r∑
i=1

λ2
i − 2λi] ≤

1

4
E[‖Qt‖2F ] ≤ γ2n(s− 1)m2

2n2

For the last step, we use (7) and (8) detailed below.

E[‖Qt‖2F ] ≤ γ2
∑

a,b∈[m]

E


∑
i6=j

εi,j(Mt)a,i(Mt)b,j

2


≤ γ2
∑

a,b∈[m]

∑
i 6=j

ε2
i,jE[(Mt)

2
a,i(Mt)

2
b,j ]

≤ γ2n(s− 1)m2E[(Mt)
2
a,i(Mt)

2
b,j ] (7)

where we have used E[(Mt)a,i(Mt)b,j ] = 0. Now, (Mt)
2
a,i ∼

Beta( 1
2 ,

n−1
2 ). Using this and cauchy inequality,

E[(Mt)
2
a,i(Mt)

2
b,j ] ≤ E[(Mt)

4
a,i]

≤ 2

n2
. (8)

Putting everything together,

DKL(PΣε‖PΣ0) ≤ γ2Tn(s− 1)

2n2

≤ cn(s− 1)

16
= c log |BE |

A. Transition Matrix

We consider a class A of transition matrices that are block
diagonal with each block being s×s. The noise matrix Qw =
I . Again, for convenience, we assume s divides n but the proof
can easily be extended to relax this assumption. The transition
matrix comes from class:

A ={
γ
∑
i,j∈[n]

εi,jeie
ᵀ
j1(k−1)s≤i<j≤(k−1)(s+1),k∈[n/s])ε ∈ {0, 1}ns

}
Here, γ = cn/m

√
T . We require that ‖Aε‖2 ≤ σmax < 1

for the VAR process to be stable as described in Section ??.
Seeing ‖Aε‖2 ≤ ‖Aε‖1 ≤ sγ, we require that T = Ω(ns/m).

Any matrix Aε ∈ A is indexed by an ns−dimensional
binary vector ε. From the Gilbert-Varshamov theorem, we can

come up with a subset AE ⊂ A with |AE | ≥ 2ns/8 such that
for any Aε, Aε′ ∈ AE , we have,

‖Aε −Aε′‖2F ≥
nsγ2

8
⇒ ‖Aε −Aε′‖2 ≥ γ

√
s

8

Observe that stacked states

XT
1 ∼ N

0,


I A A2 . . . AT−1

Aᵀ I A . . . AT−2

...
. . .

...
AT−1ᵀ AT−2ᵀ AT−3ᵀ . . . I




∼ N (0,ΦA)

Retaining notation Y T1 and stacking matrices Mt diagonally
to form M , we get that Y T1 ∼ P′A = N (0,MΦMᵀ)
and PA(ZT1 ) = P(MT

1 )P′A(Y T1 ). We seek to bound
DKL(PAε‖PA0).

DKL(PAε
‖PA0

) = EMT
1

[
DKL(P′Aε

‖P′A0
)
]

= E
[

1

2
Tr(MΦεM

ᵀ)− 1

2
log |MΦεM

ᵀ| − Tm

2

]
= E

[
−1

2
log |ITm +Q|

]
≤ E

[
1

4
‖Q‖2F

]
Where MΦAM

ᵀ = ITm +Q. Now,

E[‖Q‖2F ]

≤
∑

t1 6=t2∈[T ]

E
[
‖Mt1A

|t2−t1|Mᵀ
t2‖

2
F

]

≤
∑

t1 6=t2∈[T ];a,b∈[m]

E


∑

i,j

(A|t2−t1|)i,j(Mt1)a,i(Mt2)b,j

2


≤
∑

t1 6=t2∈[T ]

2m2γ2σ
2|t1−t2|
max ns

n2

≤ 4Tm2γ2ns

n2(1− σ2
max)

⇒ DKL(PAε‖PA0) ≤ c′ns
8
< c′ log |AE |

A fact used here is that |(Al)i,j | ≤ γσl−1
max.

Low rank Transition Matrices
1) Low-Rank Transition Matrix: We consider the family A

of rank r transition matrices (with Qw = I). For convenience,
assume r divides n.

A =
{
1n/r ⊗ Āε, Āε ∈ Rr×n, (Āε)i,j = γεi,j , ε ∈ {0, 1}nr

}
Here γ = c

√
rn/Tm2. For any A ∈ A, we require stability,

or nγ ≤ σmax < 1, which implies a requirement of T =
Ω(n3r/m2). From the Gilbert-Varshamov theorem, we know
that there exists AE ⊂ A with |AE | ≥ 2nr/8 and for Aε, Aε′ ∈
AE ,

‖Aε −Aε′‖2F ≥
γ2n2

8



If we write out the KL divergence, it is almost identical to
the previous case. We obtain

DKL(PAε‖PA0) ≤ 2Tm2γ2n2

n2(1− σ2
max)

≤ c′nr

8
= c′ log |AE |

APPENDIX D

A. Sparse Covariance Matrix

In this section, we prove a tighter lower bound for the rate
of convergence of sparse covariance matrices.

We follow the analysis of [3] and consider a class of
covariance matrices that are sparse. The analysis follows a
modified version of Assouad’s lemma.

We consider the class of symmetric covariance matrices
defined as

S =

Σ|max
j≤n

∑
i6=j

|Σij |q ≤ s


When q = 0, we see that there are at most s non-zero non-
diagonal elements in each column and by symmetry, each row.

Our constructed parameter set is as follows:
1) Consider r = bn/2c, approximately half the size of the

dimension. We consider a matrix of dimension r×r that
has exactly s non-zero elements in each row and at most
2s non-zero elements in each column. We call this set
Λ. To be more precise,

Λ =

M ∈ Rr×r|∀i ∈ [r],
∑
j

|Mi,j |0 = s,∀j ∈ [r]
∑
i

|Mi,j |0 ≤ 2s,Mi,j ∈ {0, ν}


2) Further consider set Γ, the set of all binary sequences

of length r. This set would express whether a row of a
matrix in Λ is seen.

3) For any λ ∈ Λ, let λi represent row i. Now we define
matrix L(λi) as follows. Consider λ′i ∈ R1×n where
λ′i,j = λi,j−dn/2e1(j ≥ dn/2e). Now, L(λi) = λ

′ᵀ
i λ
′
i.

This means that the ith row of L(λi) has the r elements
of λi as its right-most elements. By symmetry, the last
r elements of the ith column also arise from here.

4) Consider the parameter set Θ = (Γ,Λ) with elements
θ = (γ, λ). We now define the class of covariance
matrices we consider as

S1 =

{
Σ(θ) = I + ν

r∑
i=1

γiL(λi), θ ∈ Θ

}
First we note that ‖Σ(θ)‖2 ≥ 1 − 2sν. Taking ν =

O(c
√

logn
T ), when s = O(

√
T

logn ), we see that Σ(θ) is psd.
To reiterate, we note that the number of non-zero elements in
each row and column does not exceed 2s.

In this case, we assume that A = 0 and Xt
iid∼ N (0,Σ(θ)).

Let Pθ denote the probability of observing ZT1 . We see
Zt = MtXt, and thus Pt,θ(Zt) = P(Mt)P′t,θ(Zt) where

P′t,θ = N (0,MtΣθm
ᵀ
t ). We borrow some notation from earlier

and write.

Pθ(ZT1 ) =

T∏
t=1

Pt,θ(Zt)

=

T∏
t=1

P(Mt)P′t,θ(Zt)

Upon observing ZT1 , an estimator comes up with an estimate
Σθ̂. Observe the following sequence

max
θ

E[‖Σθ̂ − Σθ‖2] ≥ 1

2r|Λ|
∑
θ

E[‖Σθ̂ − Σθ‖2]

≥ 1

2r|Λ|
∑
θ

E[
‖Σθ̂ − Σθ‖2
ρ(γ̂, γ) ∧ 1

ρ(γ̂, γ)]

≥ min
ρ(γ̂,γ)≥1

‖Σθ̂ − Σθ‖2
ρ(γ̂, γ)

1

2r|Λ|
∑
θ

E[ρ(γ̂, γ)]

Now we show for ρ(γ̂, γ) ≥ 1,

‖Σθ̂ − Σθ‖22
ρ(γ̂, γ)

≥
‖(Σθ̂ − Σθ)v‖22
ρ(γ̂, γ)‖v‖22

≥ s2ν2

n

The choice of v here is vj = 1(j ≥ dn/2e).
We now focus on the other term and see that

1

2r|Λ|
∑
θ

E[ρ(γ̂, γ)]

≥ 1

2r|Λ|
EMt

 r∑
i=1

∑
θ:γi=0

E[γ̂i|Mt] +
∑
θ:γi=1

E[1− γ̂i|Mt]


≥ 1

2

r∑
i=1

EMt

[∫
γ̂i
∑
γi=0

dP′θ
2r−1|Λ|

+ (1− γ̂i)
∑
γi=1

dP′θ
2r−1|Λ|

]

≥ 1

2

r∑
i=1

EMt

[
1−DTV (P̄′θ,γi=0, P̄′θ,γi=1)

]
Here P̄′θ,γi=0 = 1

2r−1|Λ|
∑
θ:γi=0 P′θ. DTV is the total variation

distance.
It is easy to see that that the total variation distance between

mixture distributions is less than the total variation distance
between constituents leading to

DTV (P̄′γi=0, P̄′γi=1)

≤ 1

2r−1|Λ−i|
∑

θ:γ−i,λ−i

DTV (P′γi=0,γ−i,λ−i
, P̄′γi=1,γ−i,λ−i

)

≤ min
γ−i,λ−i

DTV (P′γi=0,γ−i,λ−i
, P̄′γi=1,γ−i,λ−i

)

We now use the following relation between distances be-
tween measures

DTV (Pa,Pb) ≤
√
Dχ2(Pa,Pb) = EPb

[(dPa/dPb)2 − 1]



We now study what the distributions we are considering
look like. P′γ1=0,γ−1,λ−1

=
∏
t P′t,γ1=0,γ−1,λ−1

, the latter is a
single multivariate distribution with the covariance matrix,

Σ0 =


[

1 0

0 Mt,−1SM
ᵀ
t,−1

]
Mt,1 = e1,

MtS
′Mᵀ

t e1 /∈Mt

,

where Mt = [Mt,1;Mt,−1] and S is a symmetric matrix
dependent on (λ−1, γ−1) with the property for i ≤ j

Sij =


1 i = j

ν γi = λij = 1

0 else

We can see that P̄′t,γ1=1,γ−1,λ−1
is a mixture of distributions

of a number of Gaussians. Suppose nλ−1
is the number of

columns in λ−1 with elements equal to 2s. From nλ−1
2s ≤ rs,

we see that nλ−1 ≤ r/2. Thus the number of distributions is
given by the number of non-zero elements in the first row λ1

that are not in these nλ−1
positions. The maximum number is

given by (r/2s) = (n/4s). Each of these distributions has this
form

Σi =


[

1 rᵀMᵀ
t,−1

Mt,−1r Mt,−1SM
ᵀ
t,−1

]
Mt,1 = e1,

MtS
′Mᵀ

t e1 /∈Mt

,

We see that if e1 /∈ Mt, distributions P′t,γ1=0,γ−1,λ−1
=

P̄′t,γ1=1,γ−1,λ−1
and the distance between them is 0. Since we

seek to find an upper bound to the distance, we can assume
that e1 ∈Mt.

We use the following useful lemma relating to chi-squared
distances between normal distributions gi = N (0,Σi):∫

g1g2

g0
= |I − Σ−2

0 (Σ1 − Σ0)(Σ2 − Σ0)|−1/2

Let’s denote

R(t, γ−1, λ−1, λ1, λ
′
1) = |I − Σ−2

0 (Σλ1
− Σ0)(Σλ′1 − Σ0)|−1/2

We can now write

Eγ−1,λ−1

[∫ ( P̄γ1=1,γ−1,λ−1

P̄γ1=0,γ−1,λ−1

)2

dP̄γ1=0,γ−1,λ−1
− 1

]
≤

Eλ1,λ′1
Eγ−1,λ−1|λ1,λ′1

[
T∏
t=1

R(t, γ−1, λ−1, λ1, λ
′
1)− 1

]
Here is an observation:

R(t, γ−1, λ−1, λ1, λ
′
1)

= R′(t, γ−1, λ−1, λ1, λ
′
1)|I − ((Σλ1

− Σ0)(Σλ′1 − Σ0))|−1/2

As proven in Lemma 11 of [3],

Eλ1,λ′1|JEγ−1,λ−1|λ1,λ′1

T∏
t=1

R′(t, γ−1, λ−1, λ1, λ
′
1) ≤ 1.5

Let’s focus on the matrix (Σλ1
−Σ0)(Σλ′1 −Σ0). It can be

written as

(Σλ1
− Σ0)(Σλ′1 − Σ0) =

[
rᵀ1M

ᵀ
t,−1Mt,−1r2 0

0 Mt,−1r1r
ᵀ
2M

ᵀ
t,−1

]
This can be seen to be a rank-2 matrix as it is of
the form

[
αᵀβ 0

0 αβᵀ

]
and the identical eigenvalues are

|rᵀ1M
ᵀ
t,−1Mt,−1r2|. Thus,

|I − ((Σλ1
− Σ0)(Σλ′1 − Σ0))|−1/2

= (1− |rᵀ1M
ᵀ
t,−1Mt,−1r2|)−1

Let the rows of Mt,−1 be mt,i, i ∈ [m− 1]. We had assumed
that mt,i are orthogonal and from the unit sphere. Suppose
that r1 is non-zero in indices I1 and r2 is non-zero in indices
I2. Let the number of overlapping indices be J . We note that

rᵀ1M
ᵀ
t,−1Mt,−1r2 ≤

m∑
l=1

∑
i∈I1,j∈I2

ν2mt,l,imt,l,j

≤ s2ν2 < 1,

with appropriate choice of constant in ν. We can conclude

|I − ((Σλ1
− Σ0)(Σλ′1 − Σ0))|−1/2

≤ 1 + 2|rᵀ1M
ᵀ
t,−1Mt,−1r2|

As described in [3], J arises from a hypergeometric distri-

bution and is bounded by
(

s2

n/4−1−s

)j
Putting all of this together,

EMt
Eγ−1,λ−1

[∫ ( P̄γ1=1,γ−1,λ−1

P̄γ1=0,γ−1,λ−1

)2

dP̄γ1=0,γ−1,λ−1
− 1

]

≤
∑
j

(
s2

n/4− 1− s

)j {
EMt

T∏
t=1

(1 + 2|rᵀ1M
ᵀ
t,−1Mt,−1r2|)

3

2
− 1

}

≤≤
∑
j

(
s2

n/4− 1− s

)j { T∏
t=1

(1 + 2jν2m
2

n2
)
3

2
− 1

}
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