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APPENDIX A

In this section, we focus on showing how VAR processes
can be reconstructed from low dimensional random projec-
tions.

At each point in time for state z;, we are given two random
low dimensional projections z{ = Wix;, i € {1,2} where the
rank of matrix ¥} is m < n.

We saw that we could write 2} = .y +/n: (1 — ) R}y
and 2?7 = wiry + Jwi(1 —w)R2x,. Here R: are rotation
matrices that are uniformly distributed on the hypersphere and

perpendicular to x;. 1y, wy % Beta (m L 2’”)

Consider the estimate of the covariance matrix,
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It can be seen that,
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The former is because E[n;] = E[w;] = m/n and the latter is

because R! is a symmetric random rotation matrix.
The difference between the mean of term P; and the true
covariance matrices is bounded as
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This quantity is zero if the system is initiated from the
stationary distribution.

We create stacked vectors of noise W = [wg|wy]. .. |wr].
Consider ® € R*T>*(T) T, ¢ RT*nT
I 0
A 0
@ =
AT T
Iy = [Onxn N | 0n><n]

We can define binary matrices {.J; };c[r) € of dimension
T x T. J, denotes locations in block matrix ® where A’ is
present. J; has at most 1 non-zero entry in each row. Hence,
[ ll2 < 1.

T
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Using these, we can write z; = I';®WW. Writing
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TABLE I: Values of the terms in (1).

where terms are detail_ed in Table I.
We observe that (pi)? < nw;ix. We now note for «, 3 €
R", [leflz = ||B]]2 = 1.
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W = Qu/*z where z ~ N(0, ). Using this, aTP;3 = 2TLz.
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The final step is by using the Hoeffding bound for the conver-
"’L2 T*k . .
gence of TR thl n:wi—r. Each term in the summation
is bounded by [0,1] and is subgaussian 1/4. By Hoeffding
bound with probability > 1 — 6/5, cgs 37, mwi g <

10(%;5/;?) < m?/n? +O(T~1/?). Let this event

Elnwiyi] +
be Err°.

For the concentration result, consider eigenvalues of sym-
metric matrix L® = ££ET be \;. We have 30, A2 = || L%[|% <
L2, Diagonalizing L*® and because of the circularly symmetric
nature of standard gaussian vector
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The first inequality holds when ¢ > 0. The second holds using

We now present the proof of Theorem 3 which combines
the above results.

Proof. Max norm bound Observe

1= =S¥ max < IIik — E[5*]|max + [IE[E*] = Z*||max
< Z |P; = E[P] max + O(T).
We use (3) to get
aT(S* —2h)p

when [|all, ]2 < 1.

Now using o = e; and 8 = e; we obtain the convergence
result for each element \Ek — Ek | and taking union bound
over the n? choices, we obtaln the result for the max bound.

/5 norm bound Let us define AYF = 3% — %% We consider
a covering set .A such that for any o € R™ such that |||z < 1,
there exists o/ € A with ||/|2 < 1, |la — &/|]2 < e. From
covering set theory, we can construct such a set with |A] <
(3/e)™. Applying union bound, we find
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We use € = 1/4 to obtain the final result. O

Subsampling case The above proof has been derived for
the compressive measurement case but it also holds for the
subsampling case. Here 2z} = Wiz, i € {1,2} where V! is a
binary matrix with m ones and n — m zeros.
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Like in the earlier case, we need to bound || B||%
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From Hoeffding bound, with probability > 1 — ¢/5 for all
values of i, j,
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The rest of the proof is the same as upper bound (2) holds.

APPENDIX B

In this section, we estimate the transition matrix and covari-
ance matrix under various constraints.

We derive convergence guarantees for the covariance matrix
under structural assumptions.

Sparsity Let the set ¢ = {Z : >, |E;[? < sVi}. We
assume ¥* € I{. First we suppose Uu(flk — ¥k is symmetric.

Consider the thresholding operation U, (-) defined as

(Uu(X));; = i 1(|245| = w).
We observe,

[1Uu(EF) = S5z < |UL(EF) = Uu(EF)]|2 + | UL(2F) -
The second term can be bounded as
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The first term needs a more detailed analysis as
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I can be bounded with high probability as,
I < ||AS*||max maxz (IB5] > u)
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For term II, we have,
H<maxZ(|AE |+ |5k |) (25| > u, 55| < )
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where we have used the bound in (5) and recognised that each
term in the second summation is bounded by wu.
Term III can be written in two parts

III<maXZ|AE 1+ 251185 ] < w, [55] > )
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where (4) has been used.

We now use u = 2v(§) to obtain the bound. if ¥ is not
symmetric. We bound ||AY"|1,||AX*||o as above and use
IASF] < [|AZF]| [|AZF]|oo.

Additionally, if A\, (XF) >
for the inverse as well as ||(U,
Q (I1U.(S) - 2*]12)

Dense Transition Matrix

With probability greater than 1—24 both, maximum value of
AY0? = 3030 and AX! = £1— %! are less than . We have
also seen that [|AX?||2, [|AX!|]2 < O(y/ny). As mentioned in
[1], we get
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€0, we obtain the result
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This is true when [|AY?|] < Amin(XY) and %0 is invertible.
The error is given by,

[A— Ally < ||SITE0F — plr50f 4 plT50f _ sir50fy,
(IAZ o + [ZT|2)|AZ |12 + [ [l AZT
40’max\/7’7||Qw”2

Ur2nin(1 U?nax) ’

IN

IA

completing the proof.

Sparse Transition Matrix

We now obtain results with sparse A. This proof is described
in [2] for getting performance bounds on estimate A using the
Dantzig selector algorithm with our estimates of 3°, X1

Let v be the maximum deviation of empirical covariance
matrices as earlier.

We show that AT = X.0T%! is a feasible solution with high
probability.

||§A:0AT - 21”max < H(io - Z0)14“110‘@( + ||(21
< (Al +1) = A

Mlmax



Clearly, ||A|.

obtain,

lA]l1 with high probability. We also

”"21 - A”max = ”EOT(EOAT - 21)”max
= ||x°f (EOAT — $OAT 4 B0AT B 4 3 21) [lmax
< 22|20 = A

We can use A; as a threshold level for sparsity. We consider
each column j separately. Define set 7 = {i € [n]|A;;| > A1 }.
For convenience, we denote column j of matrix A as a and
matrix A as a. We can write

la—alli < |lagells + [larellr + [laT — a7l
<llalls + llazells = a7l + llaT — a7l
<2llarelli + (larlls = arl1) + llaT — a7l
<2(llarelr + a7 —arlh)

Consider sum

Sq = Xi:min(t\lj', 1)

SATTY Jaif? = sAT
i

Now, ||O,T<‘||1 < Aisa = AL Also, [|lar—ar| < M|T; | <
A1sq = sA]” . Substituting these, we get the bound ||A —
Ally <4sAl77

Low Rank Transition Matrix

We assume the rank of the transition matrix A is r < n.
We use the following estimator

A = argming (AT, 30AT — 2531 4+ X, ||A]..

For the analysis, we again denote A = A — A. From the
optimality conditions and some algebra,

(AT, 20AT) < 2(AT, B! = £04T) + Au (Al — 1 4])
< (28 = £0AT [ + M)A
< 2(1AZ 2 + omaxl|AZC]|2) + Xa) 1A«

As shown in appendix earlier, we get ||All. < 4v/2r||A|r
when A\, > 4(||AZY|2 + Omax||AX0|2) = 4(1 + omax)V2-
Now the optimization problem is convex when 30 = 0 and
a sufficient condition is when [[AX%]|3 < 72 < Apmin(X9)/2.
This happens when we have large enough number of time
1287 log 1/8 _|Qullz_ Now (AT, SO0AT) >

A2 . m2 (1—0max)*”

2in (%) || X[12, which leads to the bound IA|lF < 120,V/2r.
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APPENDIX C

In this appendix, we prove fundamental lower bounds on
the estimation of the parameters of the autoregressive process.

1) Covariance Matrix: We consider a class of
n—dimensional autoregressive processes with A = 0
and X° arising from a class B of symmetric s—sparse
matrices (that have at most s elements in each row and
column) detailed below

B= {v > cigleie] +ejel)loyscici< i1y (s+1) ke /)

1<i<jn

+1,e € {0, 1}"(51>/2}.

This is the class of symmetric block-diagonal matrices. For
convenience, we assume that s divides n but this assumption
can be relaxed. Here v = ¢(m?T/n?)~/? is a parameter
which we set.

Consider any ¥. € B. Observe that ¥y with ¢ = 0 is
also a member. We observe that ||X. — Xg|l2 < sv. This
quantity would be less than 1 guaranteeing that . > 0 if
T = Q(s’n?/m?).

The Gilbert-Varshamov bound states that there exists a set
€ of n(s — 1) /2—dimensional binary vectors of size |E] >

PR N1 > "( 1) . Using
this, there exists a subset Bg, (s—1)/16 and for any
Y, 2er, we have that
2 2
vn(s—1) _ ~v*ns
e — Yo 2 > >
I8 - Sy > THEZD L o

S
= 1% - Bl 272

At each point in time, we observe Z; = U, X,. Alternatively,
we could observe Y; = M X; € R™. In the subsampling case,
M; is ¥, with all the zero rows removed. In the orthogonal
compressive measurement scenario, M; has rows that are
uniformly sampled from the n—dimensional hypersphere and
are orthogonal to one another. To reiterate, ¥; = M, M, in this
case. Now we can observe that Y; ~ P4, = N(0, M, XOM]).
Also define, P x(Z;) = P(M;)P} (Y;). As an example, we
see that P}y, = N(0,1,,). It follows from independence
(A = 0) that Ps;(Z]) = T11—, Pes(Ze).

We now find an upper bound for Dy, (Ps, || Pg,). We see,

Ps (ZT
Digr(Ps.||Ps,) = EprE [bg (3}21)) |M1T]
0

= ZEMf Dgr(P; ZEH]P)t Eo)]

t=1

We use the KL divergence between absolutely continuous
normal distributions to note

1
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@ has zero for its diagonal elements in expectation. To see
this,

E[(Meie] M) k] = E[(My)k,i (M) 5]

= (0 when i # j. (6)

This is because row (M) is a uniformly chosen unit vector
. w; ud .
with (M), = W,u N(0,1). Symmetry dictates

(6). Denote its eigenvalues by A;,i € [n]. We see that
E[Tr(Q:)] = > i_, X = 0. Also,

1
D1, (P ZEHPt 50) = _*108} [T + Q4|

ﬂZlog (1+X)

(s — l)m2

2n2

E[|Q:llF] <
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E*E 2_92)\] <
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For the last step, we use (7) and (8) detailed below.

2

E[lQlF <y > E

a,be[m]

Zem(Mt)a,i(Mt)b,j
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<y? Z Zé‘?gE[(Mt)Zz(Mt)g]]

a,b€[m] i#j
“n(s — 1)m? 2i(My)i 5] Q)
where we have used E[(M;)a,i(My)p,;] = 0. Now, (M)2 ; ~
Beta(3, 5%). Using this and cauchy inequality,

E[(Mt)a

<7 E[(M;)

(Mg ] < E[(My)g,]
2
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Putting everything together,

Y*Tn(s —1)
2n?
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A. Transition Matrix

We consider a class A of transition matrices that are block
diagonal with each block being s x s. The noise matrix @, =
1. Again, for convenience, we assume s divides n but the proof
can easily be extended to relax this assumption. The transition
matrix comes from class:

A:

{’Y D eigeiel Lk t)agici<(k-1)(st1)ken/s)E € {071}"5}

i,j€[n]

Here, v = cn/m~/T. We require that ||Ac|lz < omax < 1
for the VAR process to be stable as described in Section ??.
Seeing ||Acll2 < [|Ac|l1 < s, we require that T = Q(ns/m).

Any matrix A. € A is indexed by an ns—dimensional
binary vector €. From the Gilbert-Varshamov theorem, we can

come up with a subset Ag C A with |Ag| > 2"/8 such that
for any A., A € Ag, we have,

2 S
= 14e - Al >3

Observe that stacked states

nsy

”As - AE’H% >

I A A? AT-1
AT I A AT-2
XF~ N o,
AT-IT AT-er aTest
~N(0,®4)

Retaining notation Y;" and stacking matrices M, diagonally
to form M, we get that Vi ~ P, N(O, M®MT)
and Pa(Z1) P(MI)P,(Y{F). We seek to bound
Dgr(Pa.[[Pa,).

Drr(Pa.||Pa,)

= EMT [DKL( /

P )}
_r Tm

1
fTr(MCID MT) — flog|M<I> MT|— 5

:1 ,

<E|;lQl}
Where M® A MT = I, + Q. Now,
E[|QIIF]
< Y E[IM, At M)z

tl;étze[T]
2

< Z B Z(A‘m tll) (Mh)a l(Mtz)

t1#t2€[T];a,b€[m]

>

t1#£ta € [T]
4Tm%~%ns
n? (1 - O—rQnaX)

= DKL(PA H]P)Ao) < C

1,7

2|t —t
2m2 2, |1 2\

n2

S Ly "log | A¢|

A fact used here is that [(A'); ;| < ol

max
Low rank Transition Matrices

1) Low-Rank Transition Matrix: We consider the family A
of rank r transition matrices (with Q,, = I). For convenience,
assume 7 divides n.

.A = {]—n/r ® 1216; AE S RT"XTL’ (AE)Z,] = 7Ei,5,€ € {05 1}”7"}

Here v = c¢y/rn/Tm?. For any A € A, we require stability,
or Ny < Omax < 1, which implies a requirement of T" =
Q(n3r/m?). From the Gilbert-Varshamov theorem, we know
that there exists Ag C A with |Ag| > 2""/8 and for A., A €
Ae,

2n2

JAc — Aoz > 1



If we write out the KL divergence, it is almost identical to
the previous case. We obtain

2Tm2 2 2

’I’L2(1 - Ul%ldx)

Dgr(Pa,[[Pa,) <

< % = ¢’ log | A¢]

APPENDIX D
A. Sparse Covariance Matrix

In this section, we prove a tighter lower bound for the rate
of convergence of sparse covariance matrices.

We follow the analysis of [3] and consider a class of
covariance matrices that are sparse. The analysis follows a
modified version of Assouad’s lemma.

We consider the class of symmetric covariance matrices
defined as

S= E|max2|2”|q<s
T A

When ¢ = 0, we see that there are at most s non-zero non-
diagonal elements in each column and by symmetry, each row.
Our constructed parameter set is as follows:

1) Consider r = |n/2], approximately half the size of the
dimension. We consider a matrix of dimension r X r that
has exactly s non-zero elements in each row and at most
2s non-zero elements in each column. We call this set
A. To be more precise,

A=SMeRNie[r],Y |M;;°=sVj€r
J

2) Further consider set I', the set of all binary sequences
of length r. This set would express whether a row of a
matrix in A is seen.

3) For any A € A, let \; represent row i. Now we define
matrix L();) as follows. Consider \; € R'" where
Ao = Aij—ny211(7 > [n/2]). Now, L(A\;) = AT
This means that the i*" row of L()\;) has the r elements
of \; as its right-most elements. By symmetry, the last
r elements of the i*" column also arise from here.

4) Consider the parameter set © = (I', A) with elements
6 = (v,)\). We now define the class of covariance
matrices we consider as

51:{ —I—‘rl/Z% ee@}

First we note that ||X(0)|2 > 1 — 2sv. Taking v =
O(cy/ 10%"), when s = O( %), we see that X(6) is psd.

To reiterate, we note that the number of non-zero elements in
each row and column does not exceed 2s.

In this case, we assume that A = 0 and X, *° N(0,%(0)).
Let Py denote the probability of observing Z{. We see
Zt = MtXt, and thus ]P)t,e(Zt) = P(Mt)]PLQ(Zt) where

P} , = N(0, M;X¢m] ). We borrow some notation from earlier
and write.

T

H Py o(Z:)
H Z)

Upon observing Z1, an estimator comes up with an estimate
3. Observe the following sequence

1
2 m ZE[”Eé — Yoo

Z ||E Eellz
2’"\AI

IRy 1
min ” 9”2 ZE
p(1,7)>1 p(% 7)  27[A] 5

max E[|Z5 - S|l

Y

—a g Pl

%

Now we show for p(%,v) > 1,

125 — Zall3 _ [1(Z4 — Zo)vll3
p(¥.7) p(3,7)v]13
82V2
>
n

The choice of v here is v; = 1(j > [n/2]).
We now focus on the other term and see that

] 2 S

Z|MH| <23M = OV}

17'71|Mt

Z [72|Mt + Z

>
27“|A\ pr i iowd Powsl

ZEM[
> §;EM 1

Here Pémzo =
distance.

It is easy to see that that the total variation distance between
mixture distributions is less than the total variation distance
between constituents leading to

) dP,
+(1—4) Y 2 1|A|
1

I \/

2r or—1|A| |A|
- ‘DTV (EDIG,’yi:()’ Pl@,’ylil)]

ﬁ > 6:y,=0 Pg- Drv is the total variation

/ /

DTV(PV OaPyrl)

/
= 27 1|A Z Dry (P % =0,7—i,A—i” ]P'W—lv’)'—u)\ )

—l
O:y—i i
™/

< le)\n DTV(P%:Oy’Y—m)\—N]P’Yv::L'Y—iJ\—l)

We now use the following relation between distances be-
tween measures

Dry (Po,Py) < y/Dy2(Po,Py) = Ep, [(dPy/dPy)? — 1]



We now study what the distributions we are considering
. , - , .

look like. P% o\ 5, —.Ht P =0y 1,2, the latter is a
single multivariate distribution with the covariance matrix,

1 0
Mt,l = €1,
Yo=1410 M, _1SM_, ,
M S"MT e1 ¢ M;
where M; = [M;1;M;_1] and S is a symmetric matrix
dependent on (A_1,~v_1) with the property for i < j
1 i=j
Sij=qv vi=Xj;=1
0 else

We can see that I@;_’ si=1~_1,x_, 18 amixture of distributions
of a number of Gaussians. Suppose n)_, is the number of
columns in A_; with elements equal to 2s. From ny_,2s < rs,
we see that ny_, < r/2. Thus the number of distributions is
given by the number of non-zero elements in the first row A;
that are not in these n_, positions. The maximum number is
given by (r/2s) = (n/4s). Each of these distributions has this

form

T T
1 rTM; M —
T t,1 = €1,
My _qr Mt,_lSMt7_1 s

MtS/MtT €1 ¢ Mt

5 =

~ We see that if e; ¢ M, distributions P} | _o .  \ =
P =1,y 1.»_, and the distance between them is 0. Since we
seek to find an upper bound to the distance, we can assume
that e; € M,.

We use the following useful lemma relating to chi-squared

distances between normal distributions g; = A(0,%;):

9192 _

g0
Let’s denote

1T — 52(S1 — ) (B2 — To)| /2

R(a’yflv)‘*la)‘la)‘/l) = ‘I_ 262(2A1 - ZO)(E)\’I - E0)|71/2

We can now write
— 2

P, - _

Y1=1,9-1,A1

E"/*hk—l / (]P d]P)A/IZOa'Yfl)\—l -1
Y1=0,7-1,A—1

T
Exy v Ey yx_iay HR(ta’Y—h/\—h)\l,)\ﬁ) -1

t=1

<

Here is an observation:

R(tv’yflu)‘flv)\h)\/l)
= R/ (t,7-1, A1, A, XD = ((Sx, = Zo) (S — To))| /2

As proven in Lemma 11 of [3],

T
Exy 2 7Ey i asi iy HR/(tv'Y—la)\—la/\le) <15

t=1

Let’s focus on the matrix (X5, — ¥o)(Xx; —Xp). It can be
written as

TaAsT
. - _ rlMt,—lMt7—1r2 0
(2, EO)(Z/\l o) = { 0 Mt,—17’17“thT’71
This can eT geen Ot be a rank-2 matrix as it is of
« . . .
the form 0 a 5:1 and the identical eigenvalues are

|TIM;_1M,§7_1’I‘2|. ThUS,

[ — (2, —X0)(Bn, — $o))| /2
= (1= [r] M _ My _yrof) "

Let the rows of M; _1 be my;,i € [m — 1]. We had assumed
that m;; are orthogonal and from the unit sphere. Suppose
that r1 is non-zero in indices I; and r3 is non-zero in indices
I5. Let the number of overlapping indices be .J. We note that

m
T T 2
TlMt7_1Mt7_1’l“2 < E E Vi iy 15
I=1icl,,jEls
< st <1,

with appropriate choice of constant in . We can conclude

17— ((Zx, — Zo)(Sx — Xo))| 72
<14 2|’I‘IMJ_1Mt,_1’I“2|

As described in [3], J arises from a hypergeometric distri-

J
bution and is bounded by (n/%i—s)
Putting all of this together,
= 2

P, — _

y1=1,7—1,A_1

Ear By iaoy /(P APy =0,y 13y — 1
Y1=0,7-1,A—1

52 J A
< _ E
_Zj:<n/4—1—s) M

3
[Ja+ 20r{ M/ My, —1af)5 — 1
t=1
52 e m2 3
<< — 1+252—)= —1
5 (n/4—1—s> tl;[l( Ty n2)2
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